Les S.L.C.I

Définitions

Equation différentielle et fonction de transfert

Stabilité

Réponses temporelles Réponses fréquentielles de filtres

Système linéaire

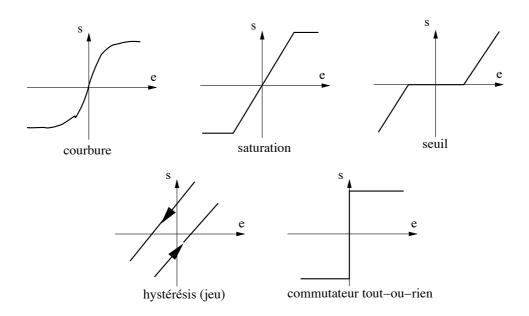
On associe à un système physique ∑ un opérateur qui, à un signal d'entrée temporel e (t) associe s (t).

$$e(t) \xrightarrow{\Sigma} s(t)$$

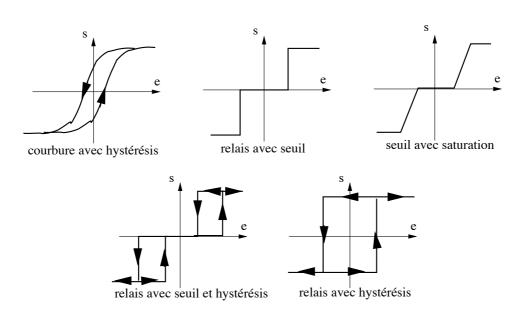
Un système est linéaire si la réponse à une combinaison linéaire d'entrées est la combinaison linéaire des sorties (les entrées étant prises séparément).

$$\begin{array}{l} e_1(t) \xrightarrow{\Sigma} s_1(t) \\ e_2(t) \xrightarrow{\Sigma} s_2(t) \end{array} \quad \text{alors } \alpha_1 e_1(t) + \alpha_2 e_2(t) \xrightarrow{\Sigma} \alpha_1 s_1(t) + \alpha_2 s_2(t)$$

Exemples de non-linéarités



Exemples de non-linéarités



Système continu

Un système est continu si toutes les grandeurs qui définissent son état sont des grandeurs continues.

<u>Attention !</u>: Cela concerne <u>les paramètres caractérisant le comportement du système</u> et **non a priori les signaux** d'entrée et de sortie.

Par exemple, il ne peut y avoir de divergence ou de bifurcation de comportement autour d'une valeur d'amplitude d'entrée donnée ou à un instant donné. <u>Ainsi des signaux légèrement différents en forme et amplitude en entrée donneront des sorties de forme et d'amplitude voisine.</u>

En pratique, ce sont des systèmes destinés à recevoir et traiter des signaux définis à tout instant (fonctions d'une échelle de temps continue) et qui restitueront en sortie des signaux ayant cette même propriété. (par opposition aux systèmes traitant des données numérisées intrinsèquement discontinues : listes)

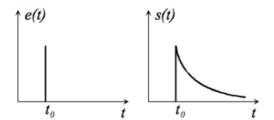
Conséquence intéressante : Cette qualité induit la propriété de **convergence** : si une suite de signaux d'entrée converge vers un signal limite alors la réponse du système à ce signal limite est nécessairement la limite de la suite des signaux réponses aux entrées de cette suite. Ce qui s'écrit sous la forme mathématique :

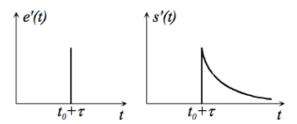
si
$$\forall p \ e_p(t) \xrightarrow{\Sigma} s_p(t)$$
 alors $e(t) \equiv \lim_{p \to \infty} e_p(t) \xrightarrow{\Sigma} s(t) \equiv \lim_{p \to \infty} s_p(t)$

Système invariant dans le temps

Un système est invariant si une translation dans le temps de la grandeur d'entrée induit la même translation dans le temps de la grandeur de sortie.

$$e(t) \xrightarrow{\Sigma} s(t) \Rightarrow e(t+\tau) \xrightarrow{\Sigma} s(t+\tau)$$





Application à l'écriture complexe d'un signal

Système stable

Définition (trop) générale

(ou définition BIBO : Bonded Input=> Bounded Output)

Un système est <u>stable</u> si sa réponse à une excitation bornée reste également bornée à tout instant.

Une définition équivalente est qu'un système est stable si la réponse libre du système tend vers zéro lorsque t tend vers l'infini.

(la réponse (ou régime) libre est l'évolution temporelle de la sortie lorsque l'entrée est nulle à chaque instant : l'évolution ultérieure dépend de l'état initial de la sortie et de la fonction de transfert du système)

si
$$e(t) = 0 \ \forall t$$
 alors $\lim_{t \to \infty} s(t) = 0$

Système régi par une EDL

$$a_0.e(t) + \sum_{i=1}^n a_i.\frac{\partial^i e}{\partial t^i} = b_0.s(t) + \sum_{i=1}^n b_i.\frac{\partial^i s}{\partial t^i}$$

L'opérateur (appliqué à l'entrée) associé à cette équation différentielle est une combinaison linéaire d'opérateurs linéaires (la dérivation est un opérateur linéaire).

Les signaux sinusoïdaux sont appelés fonctions isomorphes des systèmes linéaires : une entrée purement sinusoïdale donne au travers un système linéaire un signal de sortie de lui-même purement sinusoïdal.

Fonction de transfert

$$\underline{H}(j\omega) \equiv \frac{\underline{s}(t)}{\underline{e}(t)} = \frac{\underline{S}}{\underline{E}}$$
 avec $\underline{s}(t) = \underline{S}.e^{j\omega t}$ et $\underline{e}(t) = \underline{E}.e^{j\omega t}$ side l'équation différentielle précédente : $\underline{H}(j\omega) = \frac{\sum_{i=0}^{n} a_i.(j\omega)^i}{\sum_{i=0}^{n} b_i.(j\omega)^i}$

Cas de l'équation différentielle précédente :

$$\sum_{i=0} b_i.($$

Décomposition en Gain (module) et Phase (argument) :

$$\underline{H}(j\omega) = G(\omega).e^{j\varphi(\omega)} \qquad G(\omega) = \frac{S}{E} = |\underline{H}(\omega)|$$
$$\varphi(\omega) = \varphi_s - \varphi_e = \arg(\underline{H}(\omega))$$

Notation de Laplace

$$\underline{H}(p) \equiv \frac{\underline{s}(t)}{\underline{e}(t)} = \frac{\underline{S}(p)}{\underline{E}(p)}$$

On assimilera par commodité le p de Laplace au $j\omega$ de Fourier, pourtant, pour des raisons de nécessaire convergence des intégrales de Laplace, p doit généralement avoir une partie réelle : $p=a+j\omega$

En électronique nous ne rencontrerons quasiment que des fonctions de transfert dont le degré du numérateur est inférieur au degré du dénominateur et l'on pourra ainsi dans la plupart des cas décomposer la fonction de transfert en éléments simples. Ce qui donnera une forme de type :

$$\underline{H}(p) = A + \frac{B}{Cp + D} + \frac{Ep + F}{Ip^2 + Jp + K}$$

Critère de stabilité d'un S.L.C.I

Critère de ROUTH

Un S.L.I de fonction de transfert est stable si :

$$\underline{H}(p) \equiv \frac{\underline{s}(t)}{\underline{e}(t)} = \frac{\underline{S}(p)}{\underline{E}(p)} = \frac{N(p)}{D(p)}$$

- on a $deg(N(p)) \le deg(D(p))$,
- les pôles de D(p) sont à partie réelle négative.

Pôles et Zéros :
$$\underline{H}(p) = A.\frac{(p-z_1).(p-z_2)....(p-z_m)}{(p-p_1).(p-p_2)....(p-p_n)}$$

Transmittances d'ordre 1

lacktriangledown Transmittance fondamentale d'ordre 1 :

$$\underline{\underline{H}}(p) = \frac{H_0 + b\tau p}{1 + \tau p}$$
, avec $[\tau > 0]$ et $[\sigma > 0]$.

Passe – bas du 1er ordre	Passe – haut du 1er ordre	Déphaseur passe tout
$b = 0 \text{ et } H_0 = 1$	$b = 1$ et $H_0 = 0$	$H_0 = -b = 1$
$\underline{H}(p) = \frac{1}{1+\tau p}$	$\underline{\underline{H}}(p) = \frac{\tau p}{1 + \tau p}$	$\underline{\underline{H}(p)} = \frac{1-\tau p}{1+\tau p}; \underline{\underline{H}} = 1.$
$\begin{array}{c c} g_{dB} \\ 0 \\ \hline \\ -3 \end{array} \begin{array}{c c} \log_{10}(\omega_0) & \log_{10}\omega \\ \\ \end{array} \begin{array}{c c} pente \ de \ -20 \\ \hline \\ dB/décade \end{array}$	$\begin{array}{c c} g_{\mathrm{dB}} & \log_{10}(\omega_0) & \log_{10}\omega \\ -3 & & \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\phi = -\arctan\left(\frac{\omega}{\omega_0}\right), \ \omega_0 = \frac{1}{\tau}$	$\phi = \frac{\pi}{2} - \arctan\left(\frac{\omega}{\omega_0}\right)$	$\phi = -2 \arctan\left(\frac{\omega}{\omega_0}\right)$

Critère de stabilité d'un S.L.C.I

• Systèmes d'ordre 1 :

Dénominateur $1 + \tau p$

$$\Rightarrow$$
 équa diff régime libre : $s(t) + \tau \frac{ds}{dt} = 0$

$$\Rightarrow$$
 solution de type : $s(t) = s(0^+) e^{-\frac{t}{\tau}}$

système stable si $\tau > 0$: convergence vers 0 par exponentielle décroissante $\forall t \ge 0$ système instable si $\tau < 0$: divergence par exponentielle croissante $\forall t \ge 0$

Rq : On aurait pu présenter le dénominateur sous la forme : $-1-\tau$ '.p

On retiendra donc la règle de stabilité d'un premier ordre par des coefficients de même signe dans une présentation polynômiale du dénominateur de Laplace :

 $D(p) = b_0 + b_1 \cdot p$: stable si b_0 et b_1 de même signes

■ Transmittance fondamentale d'ordre 2 :

$$\underline{\underline{H}(p)} = \frac{H_0 + 2a\tau p + b\tau^2 p^2}{1 + 2\sigma\tau p + \tau^2 p^2}, \text{ avec } \boxed{\tau > 0} \text{ et } \boxed{\sigma > 0}.$$

Passe – bas du 2ème ordre	Passe – bande du 2ème ordre	Passe – haut du 2ème ordre
$H_0 = 1 \; ; \; a = b = 0$	$H_0=0 ; a=\sigma ; b=0$	$H_0 = 0 \; ; \; a = 0 \; ; \; b = 1$
$\underline{\underline{H}(p)} = \frac{1}{1 + 2\sigma\tau p + \tau^2 p^2}$	$\underline{\underline{H}(p)} = \frac{2\sigma\tau p}{1 + 2\sigma\tau p + \tau^2 p^2}$	$\underline{\underline{H}}(p) = \frac{\tau^2 p^2}{1 + 2\sigma\tau p + \tau^2 p^2}$
Asymptote haute fréquence à – 40 dB/décade.	Asymptote haute fréquence à – 20 dB/décade.	Asymptote haute fréquence horizontale.
Asymptote basse fréquence horizontale.	Asymptote basse fréquence à + 20 dB/décade.	Asymptote basse fréquence à + 40 dB/décade.

Réjecteur de bande du 2 ^{ème} ordre	Déphaseur passe tout du 2 ^{ème} ordre
$H_0 = 1 \; ; \; a = 0 \; ; \; b = 1$	$H_0 = 1 \; ; \; a = -\sigma \; ; \; b = 1$
$\underline{H}(p) = \frac{1 + \tau^2 p^2}{1 + 2\sigma\tau p + \tau^2 p^2}$	$\underline{\underline{H}}(p) = \frac{1 - 2\sigma\tau p + \tau^2 p^2}{1 + 2\sigma\tau p + \tau^2 p^2}$
Asymptotes basse et haute fréquence horizontales.	La rotation totale de phase, lorsque ω varie de 0 à l'infini est $\Delta \phi = -2\pi$

Critère de stabilité d'un S.L.C.I

• Systèmes d'ordre 2 :

Dénominateur de Laplace : $1 + 2\sigma\tau p + \tau^2 p^2$

Plaçons-nous alors dans un cas général ne préjugeant pas des signes des coefficients (si ce n'est le caractère non nul de b2) :

Forme généralisée du dénominateur : $b_0 + b_1 p + b_2 p^2$

ou
$$\frac{b_0 + b_1 p + b_2 p^2}{b_2} = \left(\frac{b_0}{b_2}\right) + \left(\frac{b_1}{b_2}\right) p + p^2 = p^2 + \alpha p + \beta$$

$$\Rightarrow$$
 équa diff régime libre : $\frac{d^2s(t)}{dt^2} + \alpha \cdot \frac{ds(t)}{dt} + \beta \cdot s(t) = 0$

$$\Rightarrow$$
 équa caractéristique : $r^2 + \alpha x + \beta = 0$

discriminant : $\Delta = \alpha^2 - 4\beta$ avec α et β réels

Critère de stabilité d'un S.L.C.I

• Systèmes d'ordre 2 :

Dénominateur de Laplace : $\beta + \alpha p + p^2$

1^{er} cas:

 $\beta < 0 \Rightarrow \Delta = \alpha^2 - 4\beta > 0 \Rightarrow 2$ racines réelles dont une positive!

$$r_2 = \frac{-\alpha + \sqrt{(\alpha^2 - 4\beta)}}{2} > 0$$

La sortie solution $s(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$ divergera nécessairement pour $t \to \infty$! Dans ce cas le système est INSTABLE

(ce cas ne nous arrivera quasiment jamais car : $\beta = \frac{b_0}{b_2} = \frac{1}{\tau^2} > 0$ car τ réel)

Critère de stabilité d'un S.L.C.I

• Systèmes d'ordre 2 :

$$\beta > 0 \Rightarrow \begin{cases} \alpha^2 > 4\beta & \Delta = \alpha^2 - 4\beta > 0 & (2.1) \\ \alpha^2 = 4\beta & \Delta = 0 & (2.2) \\ \alpha^2 < 4\beta & \Delta < 0 & (2.3) \end{cases}$$

$$r_{\frac{1}{2}} = \frac{-\alpha \pm \sqrt{(\alpha^2 - 4\beta)}}{2} < 0 \text{ deux racines réelles pour le (2.1)} \quad \text{négatives si } \alpha > 0 \Rightarrow STABLE$$
positives si $\alpha < 0 \Rightarrow INSTABLE$

$$r_{double} = \frac{-\alpha}{2} < 0$$
 une racine double pour le (2.2) négative si $\alpha > 0 \Rightarrow STABLE$ positive si $\alpha < 0 \Rightarrow INSTABLE$

$$r_{double} = \frac{-\alpha}{2} < 0 \text{ une racine double pour le (2.2)}$$
 négative si $\alpha > 0 \Rightarrow STABLE$ positive si $\alpha < 0 \Rightarrow INSTABLE$
$$r_{\frac{3}{4}} = \frac{-\alpha \pm j\sqrt{(4\beta - \alpha^2)}}{2} \text{ deux racines complexes pour le (2.3)}$$
 dont la partie réelle est négative si $\alpha > 0 \Rightarrow STABLE$ dont la partie réelle est positive si $\alpha < 0 \Rightarrow INSTABLE$

Critère de stabilité d'un S.L.C.I

• Systèmes d'ordre 2 :

Conclusion

Un SLCI du second ordre et de dénominateur de Laplace $\beta + \alpha p + p^2$ est stable si et seulement si les coefficients α et β sont positifs

On retiendra donc la règle de stabilité d'un second ordre par des coefficients de même signe dans une présentation polynômiale du dénominateur de Laplace :

$$D(p) = b_0 + b_1 \cdot p + b_2 \cdot p^2$$
: stable si b_0 , b_1 et b_2 de même signes

Interprétation énergétique de la stabilité

Appliquée au signal de sortie consécutif à un régime libre, nous pouvons associer la condition de stabilité d'un système d'ordre 2 à la dépendition progressive « d'énergie » $E_{\Sigma}(s(t))$ du système Σ qui n'est plus alimenté et siège d'un signal s(t). On peut définir cette forme générale d' « énergie » à une constante multiplicative près :

$$E_{\Sigma}(s(t)) \equiv K \cdot \left(\frac{1}{2}\dot{s}(t)^2 + \frac{\omega_0^2}{2}s(t)^2\right)$$

(Montrez que dans le cas particulier d'un circuit RLC cette expression correspond bien à l'énergie électrique du système complet (si s(t) est la tension aux bornes du condensateur alors K=LC²))

Le dénominateur de Laplace $1+2\sigma\tau p+\tau^2 p^2$ correspond à l'équation différentielle :

$$\frac{d^2s}{dt^2} + \frac{2\sigma}{\tau}\dot{s}(t) + \frac{1}{\tau^2}s(t) = 0 \quad \text{que I'on multiplie par } \dot{s(t)} \neq 0$$
Pour faire apparaître :
$$\frac{d^2s}{dt^2}\dot{s}(t) + \frac{1}{\tau^2}s(t)\dot{s}(t) = -\frac{2\sigma}{\tau}\big(\dot{s}(t)\big)^2$$

$$\frac{d\bigg(\frac{E_\Sigma\big(s(t)\big)}{K}\bigg)}{dt} = -\frac{2\sigma}{\tau}\big(\dot{s}(t)\big)^2$$

Interprétation énergétique de la stabilité

$$\frac{d\left(\frac{E_{\Sigma}(s(t))}{K}\right)}{dt} = -\frac{2\sigma}{\tau}(\dot{s}(t))^{2}$$

En revenant aux notations de la démonstration précédente : $\alpha = \frac{2\sigma}{\tau}$ et $\beta = \frac{1}{\tau^2} > 0$

On comprend que le cas $\alpha > 0$ donnerait une énergie décroissante lors d'un régime libre

Alors que $\alpha < 0$ donnerait une énergie croissante lors de ce régime libre.

Dans le cas d'un circuit ne contenant que des éléments passifs, le système est nécessairement stable $\alpha>0$. La seule exception serait le cas $\alpha=0$ (circuit LC par exemple) mais ce n'est qu'une frontière ne correspondant jamais à une situation physique réelle.

Nous ne rencontrerons finalement des situations d'instabilité en électronique qu'en incorporant un composant actif apportant une énergie supérieure aux pertes (cas de l'ALI traité dans le chapitre suivant (réalisant par exemple une « résistance négative »))

Réponses temporelles des S.L.C.I.

Réponse Indicielle

On appelle échelon unité ou fonction de Heaviside, notée u(t), la fonction définie par :

$$u(t) = 1 \text{ pour } t \ge 0$$

$$u(t) = 0 \text{ pour } t < 0$$

Signal échelon de tension :
$$e(t) = E_0.u(t)$$

Réponse Indicielle

Exemple d'un filtre passe-haut du premier ordre :

$$\underline{H(p)} = \frac{\tau \cdot p}{1 + \tau \cdot p} \Leftrightarrow s(t) + \tau \cdot \frac{ds(t)}{dt} = \tau \cdot \frac{de(t)}{dt}$$

avec
$$e(t) = E_0.u(t)$$
 soit $\frac{de(t)}{dt} = 0$ pour $t < 0$ et $t > 0$

soit pour t>0 :
$$s(t) + \tau \cdot \frac{ds(t)}{dt} = 0 \Leftrightarrow s(t) = s(0^+) \cdot \exp(-\frac{t}{\tau})$$

Réponses temporelles des S.L.C.I.

Réponse Indicielle

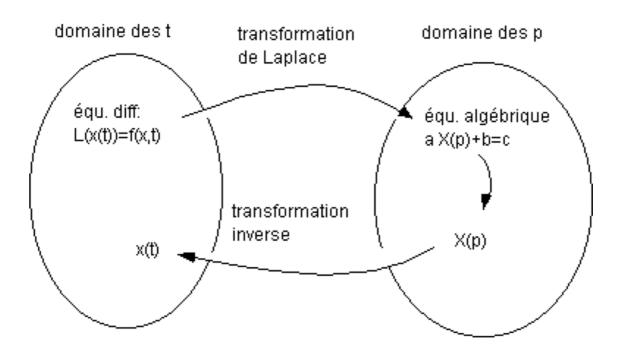
Exemple d'un filtre passe-haut du premier ordre :

Signaux finis => relation entre les discontinuités de e(t) et s(t)

$$\begin{split} s(t) + \tau . \frac{ds(t)}{dt} &= \tau . \frac{de(t)}{dt} \\ \Rightarrow \int_{0^{-}}^{0^{+}} s(t) \, dt + \tau . \Big[s(0^{+}) - s(0^{-}) \Big] &= \tau . \Big[e(0^{+}) - e(0^{-}) \Big] \end{split}$$

Ainsi si s(t) est finie, les discontinuités de e(t) et s(t) sont égales

Soit, si
$$s(\theta^-)=\theta$$
, $s(\theta^+)=E_\theta$ et donc $s(t)=E_0.\exp(-\frac{t}{\tau})$ pour $t>0$



Réponses temporelles des S.L.C.I.

Réponse à un signal d'énergie finie

Transformée de Laplace d'un signal

$$\underline{E}(p) = TL[\underline{e}(t)](p) \equiv \int_{0^{-}}^{+\infty} \underline{e}(t).e^{-pt} dt \text{ avec } p = \alpha + j\omega$$

On obtient donc la réponse filtrée par la transformée de Laplace inverse :

$$\underline{s}\left(\,t\,\right) = TL^{-1}\big[\,\underline{S}(p)\,\big]\big(\,t\,\big) \equiv \frac{1}{2j\pi}\int\limits_{-\infty}^{+\infty}\underline{H}\left(\,p\,\right).\underline{E}\left(\,p\,\right).e^{pt}\;dp$$

Réponse à un signal d'énergie finie

Propriétés de la transformée de Laplace

$$L_I[af(t)+bg(t)]=aF(p)+bG(p)$$
 (linéarité)

$$L_{I}\left[\frac{df(t)}{dt}\Big|_{}^{}\right] = pF(p) - f(0_{-}) \quad \text{(dérivée)}$$

$$L_{I}\left[\int_{0}^{t} f(t)dt\right] = \frac{F(p)}{p} \quad \text{(intégrale)}$$

$$L_I[f(t-\tau)] = e^{-p\tau}F(p)$$
 (retard temporel)

$$L_I \left[e^{-\sigma t} f(t) \right] = F(p + \sigma)$$
 (translation de la transformée)

Réponses temporelles des S.L.C.I.

Réponse à un signal d'énergie finie

Transformées de Laplace de signaux fondamentaux

$$L_{I}[\delta(t)] = \int_{0}^{\infty} \delta(t)e^{-pt}dt = 1$$

$$L_{I}\left[\varepsilon(t)\right] = \int_{0}^{\infty} e^{-pt} dt = \frac{-1}{p} \left[e^{-pt}\right]_{0_{-}}^{\infty} = \frac{1}{p}$$

$$L_{I}\left[e^{-at}\varepsilon(t)\right] = \int_{0}^{\infty} e^{-at}e^{-pt}dt = \frac{-1}{p+a}\left[e^{-(p+a)t}\right]_{0_{-}}^{\infty} = \frac{1}{p+a}$$

Réponse à un signal d'énergie finie

Transformées de Laplace de signaux fondamentaux

$$\begin{split} L_{I} \Big[\cos(\omega t) \varepsilon(t) \Big] &= L_{I} \Bigg[\Bigg(\frac{e^{-j\omega t} + e^{j\omega t}}{2} \Bigg) \varepsilon(t) \Bigg] = \frac{1}{2} \Bigg(\frac{1}{p + j\omega} + \frac{1}{p - j\omega} \Bigg) = \frac{p}{p^{2} + \omega^{2}} \\ L_{I} \Big[e^{-\sigma t} \sin(\omega t) \varepsilon(t) \Big] &= L_{I} \Bigg[\Bigg(\frac{e^{-(\sigma - j\omega t)} - e^{-(\sigma + j\omega t)}}{2j} \Bigg) \varepsilon(t) \Bigg] = \frac{1}{2j} \Bigg(\frac{1}{p + (\sigma - j\omega)} - \frac{1}{p + (\sigma + j\omega)} \Bigg) \\ &= \frac{1}{2j} \frac{2j\omega}{p^{2} + 2\sigma p + \rho^{2}} \qquad avec \quad \rho^{2} = \sigma^{2} + \omega^{2} \end{split}$$

Réponses temporelles des S.L.C.I.

Réponse à un signal d'énergie finie

Propriétés de la transformée de Laplace

$$\lim_{p\to\infty} pF(p) = \lim_{t\to 0+} f(t)$$
 (théorème de la valeur initiale) (à condition que ces limites existent)

$$\lim_{p\to 0} pF(p) = \lim_{t\to \infty} f(t)$$
 (théorème de la valeur finale) (à condition que ces limites existent)

Application de la TL à ce cas élémentaire

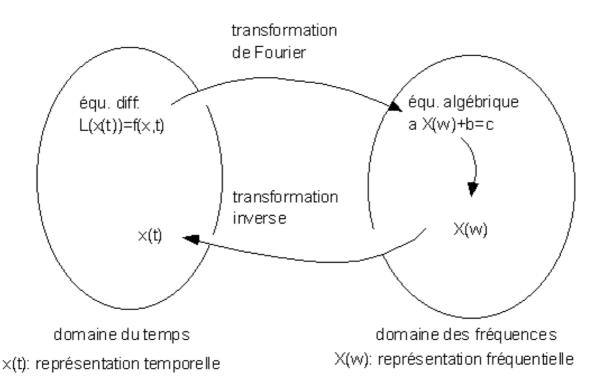
Retrouvons la réponse indicielle d'un passe-haut du 1^{er} ordre :

$$s(t) + \tau . \frac{ds(t)}{dt} = \tau . \frac{de(t)}{dt} \Leftrightarrow \underline{H(p)} = \frac{\tau . p}{1 + \tau . p}$$
 avec l'échelon de tension : $e(t) = E_0 . u(t) \Leftrightarrow \underline{E}(p) = \frac{E_0}{p}$ soit $\underline{S}(p) = \underline{H}(p)\underline{E}(p) = \frac{E_0}{p} . \frac{\tau p}{1 + \tau p} = E_0 . \frac{1}{\frac{1}{\tau} + p}$

dont la transformée de Laplace inverse donne :

$$s(t) = E_0.e^{-\frac{t}{\tau}}.u(t)$$

Réponses temporelles des S.L.C.I.



Réponse à un signal d'énergie finie

Transformée de Fourier d'un signal

$$\underline{E}(\omega) = TF[\underline{e}(t)](\omega) \equiv \int_{-\infty}^{+\infty} \underline{e}(t).e^{-j\omega t} dt$$

 $\underline{\underline{E}}(\omega)$ est le spectre (a priori continu) du signal e(t)

On peut alors démontrer la transformée de Fourier inverse :

$$\underline{e}(t) = TF^{-1} \left[\underline{E}(\omega) \right] (t) \equiv \frac{1}{2\pi} \int_{-\infty}^{+\infty} \underline{E}(\omega) . e^{j\omega t} d\omega$$

Réponses temporelles des S.L.C.I.

Réponse à un signal d'énergie finie

Transformée de Fourier d'un signal filtré

 $\underline{H}(j\omega)$ est la fonction de transfert du filtre

$$\underline{H}(j\omega) = \frac{\underline{S}(\omega)}{\underline{E}(\omega)}$$

Après avoir déterminé la TF du signal d'entrée:

$$\underline{E}(\omega) = TF[\underline{e}(t)](\omega) \equiv \int_{-\infty}^{+\infty} \underline{e}(t).e^{-j\omega t} dt$$

On obtient alors le signal filtré par :

$$\underline{s}(t) = TF^{-1} \left[\underline{S} \left(\omega \right) \right] \! \left(t \right) \equiv \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \underline{H} \left(j\omega \right) \underline{E} \left(\omega \right) . e^{j\omega t} \; d\omega$$

Réponse Indicielle

Exemple d'un filtre passe-bas du second ordre:

$$\underline{H(p)} = \frac{1}{1 + 2\sigma\tau p + \tau^2 p^2} \Leftrightarrow s(t) + 2\sigma\tau \cdot \frac{ds(t)}{dt} + \tau^2 \cdot \frac{d^2s(t)}{dt^2} = e(t)$$

SGEASM=SPEASM+SGESSM

SPEASM (pour t>0): $s(t)=E_0$

SGESSM : recherche des racines de l'équation caractéristique :

$$\tau^2 \cdot \frac{d^2 s(t)}{dt^2} + 2\sigma \tau \cdot \frac{ds(t)}{dt} + s(t) = 0$$
$$r^2 + \frac{2\sigma}{\tau} \cdot r + \frac{1}{\tau^2} = 0$$

Réponses temporelles des S.L.C.I.

Réponse Indicielle

Exemple d'un filtre passe-bas du second ordre:

$$\underline{r}^2 + \frac{2\sigma}{\tau} \underline{r} + \frac{1}{\tau^2} = 0 \Rightarrow \Delta' = \left(\frac{\sigma}{\tau}\right)^2 - \frac{1}{\tau^2} = \frac{\sigma^2 - 1}{\tau^2}$$
$$\underline{r} = -\frac{\sigma}{\tau} \pm \sqrt{\frac{\sigma^2 - 1}{\tau^2}}$$

 σ et τ réels positifs :

- si $\sigma > 1: \frac{\sigma^2 - 1}{\tau^2} > 0$ et les deux racines sont réelles

$$SGESSM(t) = \exp\biggl(-\frac{\sigma.t}{\tau}\biggr).\biggl(\lambda.\exp\biggl(+\sqrt{\frac{\sigma^2-1}{\tau^2}}.t\biggr) + \mu.\exp\biggl(-\sqrt{\frac{\sigma^2-1}{\tau^2}}.t\biggr)\biggr)$$

Réponse Indicielle

Exemple d'un filtre passe-bas du second ordre:

$$\underline{r}^2 + \frac{2\sigma}{\tau} \cdot \underline{r} + \frac{1}{\tau^2} = 0 \Rightarrow \Delta' = \left(\frac{\sigma}{\tau}\right)^2 - \frac{1}{\tau^2} = \frac{\sigma^2 - 1}{\tau^2}$$
$$\underline{r} = -\frac{\sigma}{\tau} \pm \sqrt{\frac{\sigma^2 - 1}{\tau^2}}$$

 σ et τ réels positifs :

- si $\sigma = 1$: racine double

$$SGESSM(t) = (\alpha + \beta . t) \exp\left(-\frac{t}{\tau}\right)$$

Réponses temporelles des S.L.C.I.

Réponse Indicielle

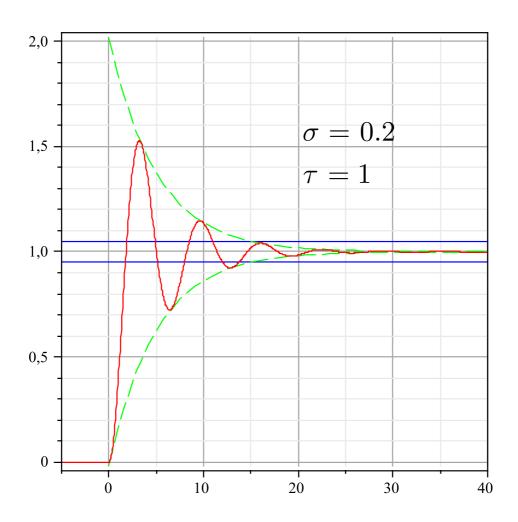
Exemple d'un filtre passe-bas du second ordre:

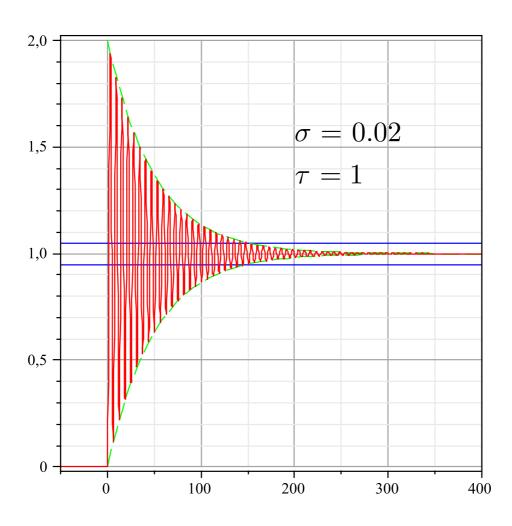
$$\underline{r}^2 + \frac{2\sigma}{\tau} \underline{r} + \frac{1}{\tau^2} = 0 \Rightarrow \Delta' = \left(\frac{\sigma}{\tau}\right)^2 - \frac{1}{\tau^2} = \frac{\sigma^2 - 1}{\tau^2}$$
$$\underline{r} = -\frac{\sigma}{\tau} \pm \sqrt{\frac{\sigma^2 - 1}{\tau^2}}$$

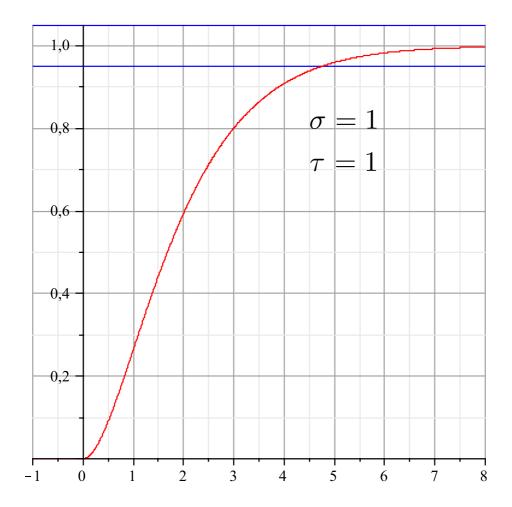
 σ et τ réels positifs :

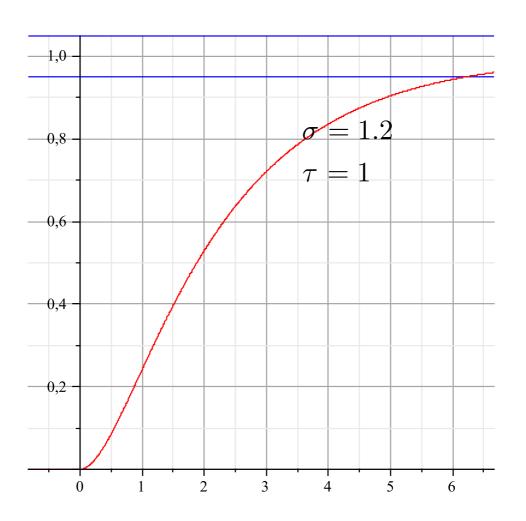
- si $\sigma < 1$: les racines sont complexes

$$\begin{split} &SGESSM(t) = \exp\biggl(-\frac{\sigma t}{\tau}\biggr). \biggl[A.\exp\biggl(j.\sqrt{\frac{1-\sigma^2}{\tau^2}}.t\biggr) + B.\exp\biggl(-j.\sqrt{\frac{1-\sigma^2}{\tau^2}}.t\biggr)\biggr] \\ &\text{ou } SGESSM(t) = S_0 \exp\biggl(-\frac{\sigma t}{\tau}\biggr). \bigl[\sin\bigl(\Omega.t + \varphi\bigr)\bigr] \ \text{avec} \ \Omega = \frac{\sqrt{1-\sigma^2}}{\tau} = \omega_0. \Bigl(\sqrt{1-\sigma^2}\Bigr) \end{split}$$









Comment distinguer un système du second ordre en régime apériodique d'un système du premier ordre ?

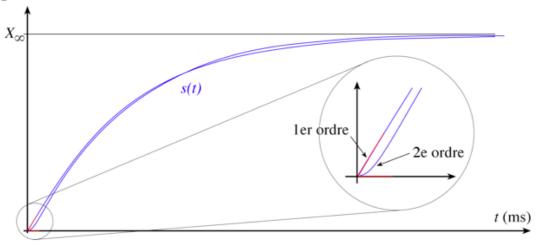
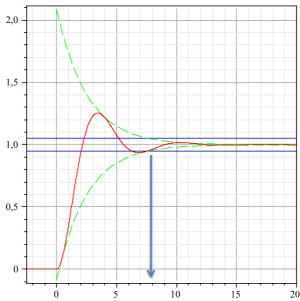


figure 11

La tangente à l'origine de la réponse d'un système du second ordre est horizontale. Ce n'est pas le cas pour la réponse d'un système du premier ordre.

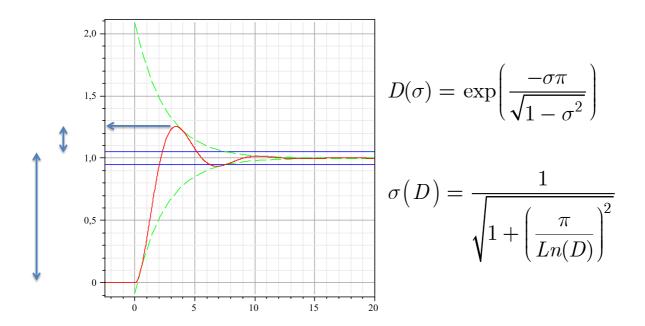
Paramètres caractéristiques de la réponse

• <u>Temps de réponse à 5%</u>: C'est le temps nécessaire pour que la sortie du système évolue jusqu'à ce que son écart à la valeur finale soit définitivement inférieur à 5 % de l'écart entre la valeur initiale et la valeur finale.

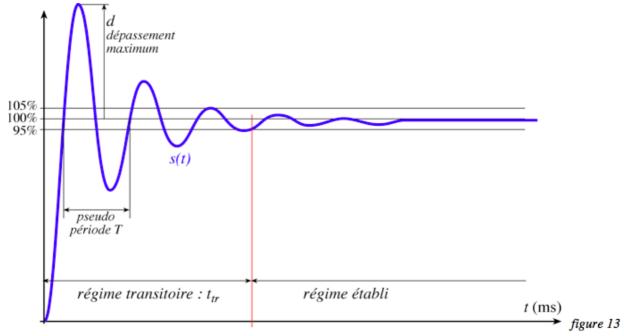


Paramètres caractéristiques de la réponse

• <u>Dépassement</u>: C'est le pourcentage maximum d'écart à la valeur finale hors intervalle [valeur initiale-valeur finale].

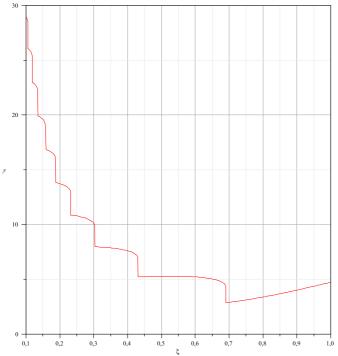


Relevés graphiques.



On estime que le régime permanent est établi lorsque le signal ne dépasse plus \pm 5% de sa valeur finale.

Détermination du temps caractéristique $au \equiv rac{1}{\omega_0}$



Abaque du temps réduit

$$t_r(5\%, \sigma) \equiv \frac{t_{5\%}}{\tau} = \omega_0.t_{5\%}$$

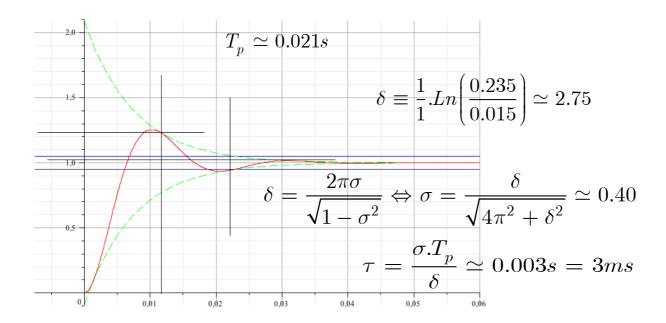
fonction de l'amortissement

Pour obtenir le temps

$$\tau = \frac{t_{5\%}}{t_r \left(5\%, \sigma\right)}$$

Pseudo-période et décrément logarithmique

$$T_p \equiv \frac{2.\pi}{\Omega} \equiv \frac{2.\pi}{\omega_0.\sqrt{1-\sigma^2}} \qquad \delta \equiv \frac{1}{n}.Ln \left(\frac{s(t)-E_0}{s(t+nT_p)-E_0} \right) = \frac{\sigma.T_p}{\tau}$$



Application de la TL à un cas plus complexe

Réponse d'un passe-bande à un démarrage de GBF en signal cosinusoïdal démarrant à l'instant zéro

$$\underline{H(p)} = \frac{2.\sigma.\tau.p}{1 + 2.\sigma.\tau.p + p^2.\tau^2} = \frac{\frac{\tau.p}{Q}}{1 + \frac{\tau.p}{Q} + p^2.\tau^2}$$

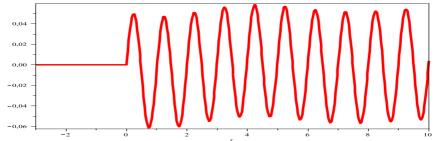
Réponses temporelles des S.L.C.I.

Application de la TL à un cas plus complexe

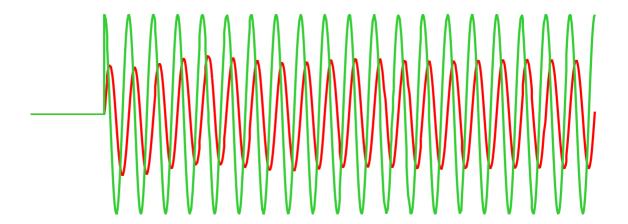
Réponse d'un passe-bande à un démarrage de GBF en signal cosinusoïdal

MapleTM calcule:
$$S(p) := \frac{p^2 T^2 \tau}{\left(p^2 T^2 + 4 \pi^2\right) \left(Q + \tau p + p^2 \tau^2 Q\right)}$$

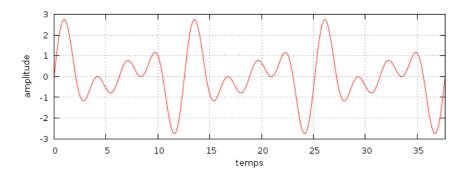
et trace cette réponse temporelle s(t) pour
$$T=1, \tau=1, \mathcal{Q}=3$$



En superposant l'excitation et la réponse (x10), on peut observer le régime transitoire puis le régime permanent (qui sera généralement le seul auquel nous nous intéresserons).



Réponse fréquentielle des filtres fondamentaux à un signal périodique

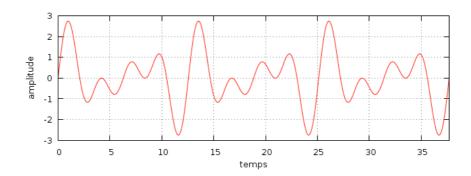


Soit f une fonction T-périodique et continue par morceaux.

Soit
$$\omega \equiv \frac{2\pi}{T}$$
 sa pulsation fondamentale

On peut décomposer cette fonction de la manière suivante :

$$f(t) = c_0 + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega t) + b_n \cdot \sin(n\omega t))$$



Coefficients de Fourier.

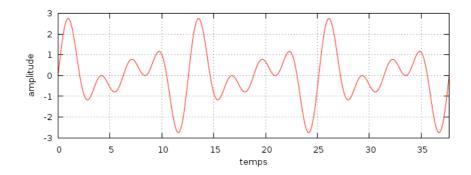
Coefficients réels. Soit f une fonction T-périodique et continue par morceaux ; $\omega = 2\pi/T$ la pulsation associée. Les coefficients de Fourier de f sont définies par

$$c_0 = c_0(f) = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt,$$

et pour tout entier $n \geq 1$,

$$a_n = a_n(f) = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt,$$

$$b_n = b_n(f) = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt.$$



C0 est la ${f composante\ continue}\ ({f ou\ moyenne\ temporelle})\ du\ signal$

$$a_1.\cos(\omega t) + b_1.\sin(\omega t)$$
 est la composante (ou le mode) fondamental(e)

$$a_n . \cos(n\omega t) + b_n . \sin(n\omega t)$$
 est l'harmonique de rang n



▶ composante continue ?

- ▶ calcul des coefficients de Fourier par Maple et synthèse de Fourier
- ▶ calcul littéral des coefficients non-nuls

Calculons b_n .

$$b_n = \frac{4}{T} \int_0^{T/2} \sin(n\omega t) dt = \frac{4}{T} \left[-\frac{\cos(n\omega t)}{n\omega} \right]_0^{T/2} = \frac{4}{n\omega T} \left(1 - \cos(n\omega T/2) \right).$$

Comme $\omega T = 2\pi$ et $\cos(n\pi) = (-1)^n$, on obtient

$$b_n = \frac{2}{n\pi} \left(1 - (-1)^n \right) = \begin{cases} \frac{4}{n\pi}, & \text{si } n \text{ est impair,} \\ 0, & \text{si } n \text{ est pair.} \end{cases}$$

Le signal triangulaire —

▶ composante continue ?

▶ calcul littéral des coefficients non-nuls

Pour tout $n \ge 1$,

$$a_n = \frac{4}{T} \int_0^{T/2} (1 - 2t/T) \cos(n\omega t) dt = \frac{4}{T} \left[\frac{\sin(n\omega t)}{n\omega} \right]_0^{T/2} - \frac{8}{T^2} \int_0^{T/2} t \cos(n\omega t) dt.$$

Comme $\omega T = 2\pi$ et $\sin(n\pi) = 0$, on a

$$a_n = -\frac{8}{T^2} \int_0^{T/2} t \cos(n\omega t) dt.$$

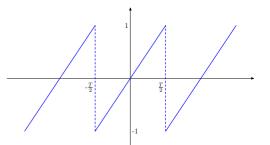
Faisons une intégration par parties en posant u(t)=t et $v'(t)=\cos(n\omega t)$: u'(t)=1 et $v(t)=\sin(n\omega t)/(n\omega)$. Il vient $(\sin(n\pi)=0)$

$$-\frac{T^2}{8}a_n = \left[t\sin(n\omega t)/(n\omega)\right]_0^T - \int_0^{T/2} \sin(n\omega t)/(n\omega) dt = 0 - \left[-\frac{\cos(n\omega t)}{(n\omega)^2}\right]_0^{T/2}$$

c'est à dire, comme $\cos(n\pi) = (-1)^n$,

$$a_n = \frac{8}{(nT\omega)^2} (1 - (-1)^n) = \frac{2}{n^2\pi^2} (1 - (-1)^n) = \begin{cases} \frac{4}{n^2\pi^2}, & \text{si n est impair,} \\ 0, & \text{sinon.} \end{cases}$$

Le signal «dents de scie»



▶ composante continue ?

▶Les coefficients

$$c_0 = 0$$

$$a_n = 0$$

$$b_n = \frac{2(-1)^{n+1}}{n\pi}$$

▶Synthèse sous Maple

Parité

Remarque. Si f est une fonction paire – pour tout réel t, f(-t)=f(t) –, pour tout $n\geq 1,$ $b_n(f)=0$ et

$$a_n(f) = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega t) dt, \qquad c_0(f) = \frac{2}{T} \int_0^{T/2} f(t) dt.$$

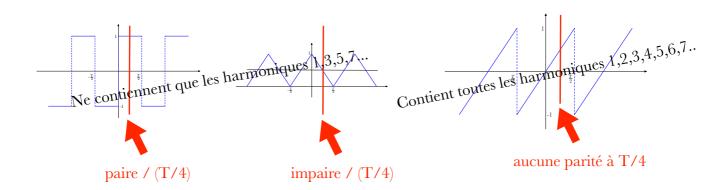
Si f est une fonction impaire – pour tout réel t, f(-t)=-f(t) –, $c_0(f)=0$, pour tout $n\geq 1$, $a_n(f)=0$, et

$$b_n(f) = \frac{4}{T} \int_0^{T/2} f(t) \sin(n\omega t) dt.$$

Ici le choix de l'origine des temps n'a pas de signification physique!

Parité au «quart de période»

Un signal alternatif (moyenne temporelle nulle) présentant autour de T/4 la parité inverse de celle observée autour de 0 ne contiendra que des harmoniques d'entiers impairs (n=1,3,5,7...)



Théorème de Parseval

Soit f une fonction T-périodique et continue par morceaux de DSF :

$$f(t) = c_0 + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega t) + b_n \cdot \sin(n\omega t))$$

On montre que la moyenne quadratique de cette fonction périodique s'écrit :

$$\langle f^2 \rangle \equiv \frac{1}{T} \int_{0}^{T} f(t)^2 dt = c_0^2 + \sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{2}$$

Cette grandeur est proportionnelle à la puissance moyenne en physique (si f(t) représente l'amplitude du phénomène variable)

Ainsi on peut interpréter cette égalité comme la propriété (non-intuitive car les termes sont quadratiques)

de l'additivité des puissances moyennes de toutes les composantes de Fourier d'un signal périodique

Spectre fréquentiel

On donne plus volontiers une représentation de chaque composante harmonique d'un signal périodique par son amplitude A_n et sa phase φ_n

Spectre. Écrivons différemment le terme d'ordre n de la série de Fourier de f.

$$a_n \cos(n\omega t) + b_n \sin(n\omega t) = \sqrt{a_n^2 + b_n^2} \left(\frac{a_n}{\sqrt{a_n^2 + b_n^2}} \cos(n\omega t) + \frac{b_n}{\sqrt{a_n^2 + b_n^2}} \sin(n\omega t) \right)$$

c'est à dire, notant $A_n = \sqrt{a_n^2 + b_n^2}$

$$a_n \cos(n\omega t) + b_n \sin(n\omega t) = A_n \left(\frac{a_n}{A_n} \cos(n\omega t) + \frac{b_n}{A_n} \sin(n\omega t)\right)$$

Puisque $(a_n/A_n)^2 + (b_n/A_n)^2 = 1$, il existe un réel φ_n tel que $\cos \varphi_n = a_n/A_n$ et $\sin \varphi_n = b_n/A_n$. On a alors

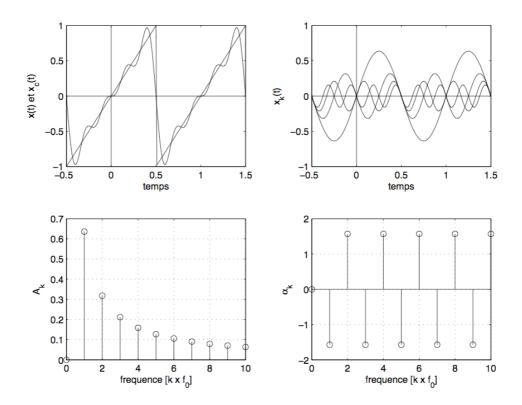
$$a_n \cos(n\omega t) + b_n \sin(n\omega t) = A_n (\cos\varphi_n \cos(n\omega t) + \sin\varphi_n \sin(n\omega t)) = A_n \cos(n\omega t - \varphi_n).$$

On voit donc apparaître l'amplitude A_n , la pulsation $n\omega$ et le déphasage φ_n .

Malgré l'absence critique de l'information sur la phase φ_n de chaque harmonique, on appelle SPECTRE fréquentiel du signal, la liste des amplitudes $A_n(n\omega)$

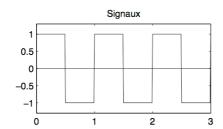
Spectre fréquentiel

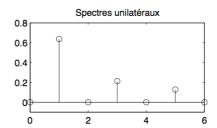
Lecture du spectre complet du signal «dents de scie»



Spectre fréquentiel

Ce qu'il faut savoir sur les deux signaux périodiques principaux





Signal carré

- L'amplitude du fondamental d'un signal carré est supérieur d'un facteur $4/\pi$ à celle du signal lui-même.
- •Il ne contient que des harmoniques impaires n=3,5,7 etc.
- •L'amplitude des harmoniques décroit en 1/n

Signal triangulaire

- L'amplitude du fondamental d'un signal carré est inférieure d'un facteur $8/\pi^2$ à celle du signal lui-même.
- •Il ne contient que des harmoniques impaires n=3,5,7 etc.
- •L'amplitude des harmoniques décroit en 1/n²

Expression complexe de la DSF

Soit f une fonction réelle T-périodique et continue par morceaux, on peut également l'écrire avec des coefficients de Fourier complexes :

$$f(t) = \sum_{n=-\infty}^{\infty} \underline{c_n} \cdot \exp^{+in\omega t}$$

Coefficients complexes. On note, pour tout $n \in \mathbb{Z}$,

$$c_n = c_n(f) = \frac{1}{T} \int_0^T f(t)e^{-in\omega t} dt = \frac{1}{T} \int_{-T/2}^{T/2} f(t)e^{-in\omega t} dt.$$

$$\forall n \ge 1, \qquad c_n(f) = \frac{a_n(f) - ib_n(f)}{2}, \qquad c_{-n}(f) = \frac{a_n(f) + ib_n(f)}{2}$$

soit encore

$$\forall n \geq 1,$$
 $a_n(f) = c_n(f) + c_{-n}(f),$ $b_n(f) = i (c_n(f) - c_{-n}(f)).$

Allure des « spectres » réels d'amplitudes par FFT à l'oscillo numérique

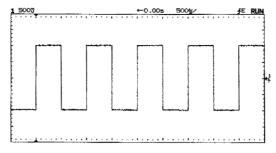


Fig. 5 – Tension créneau périodique

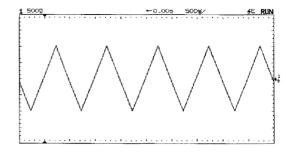


Fig. 7 - Tension triangulaire périodique

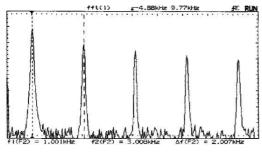


Fig. 6 – Spectre de la tension créneau périodique

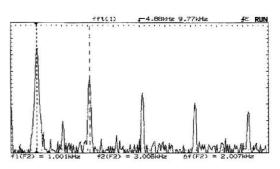


Fig. 8 – Spectre de la tension triangulaire périodique

Allure des « spectres » réels d'amplitudes par FFT à l'oscillo numérique

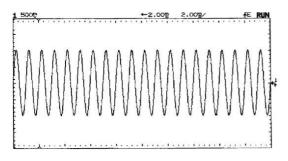


Fig. 1 – Tension sinusoïdale

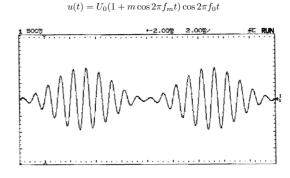
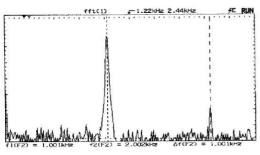
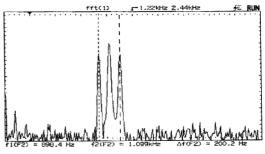


Fig. 3 – Tension sinusoïdale modulée en amplitude



 ${\rm Fig.}~2$ – Spectre de la tension sinusoïdale



 ${\rm Fig.}~4$ – Spectre de la tension sinusoïdale modulée en amplitude

Allure des « spectres » réels d'amplitudes par FFT à l'oscillo numérique

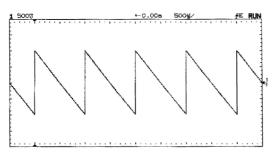


Fig. 9 – Tension dent de scie périodiqu

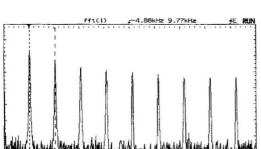


Fig. 10 – Spectre de la tension dent de scie périodique

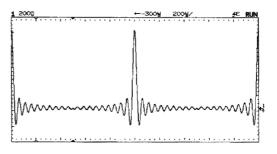


Fig. 11 - Tension de forme proche de l'impulsion

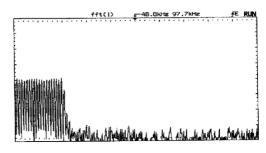


Fig. 12 - Spectre de la tension proche de l'impulsion

Expression générique d'un signal filtré

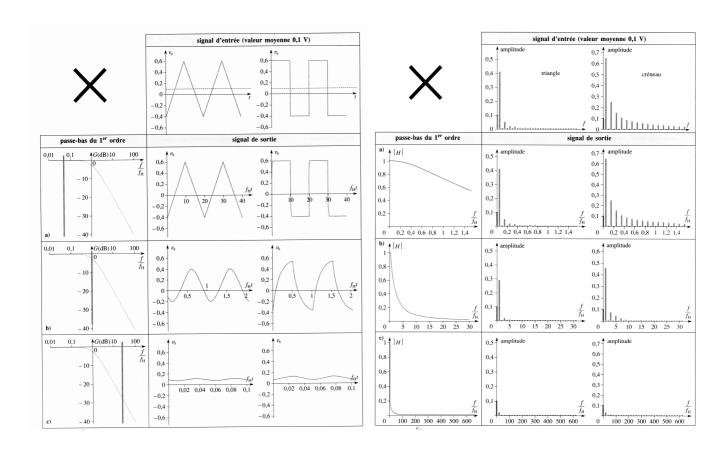
Attention au changement de notation !! On garde ω pour la variable pulsation et on note ω_0 la pulsation du fondamental

$$\underline{H}(j\omega) = \frac{\underline{s}(t)}{\underline{e}(t)} = \frac{\underline{S}}{\underline{E}} = G(\omega).e^{j\varphi(\omega)}$$

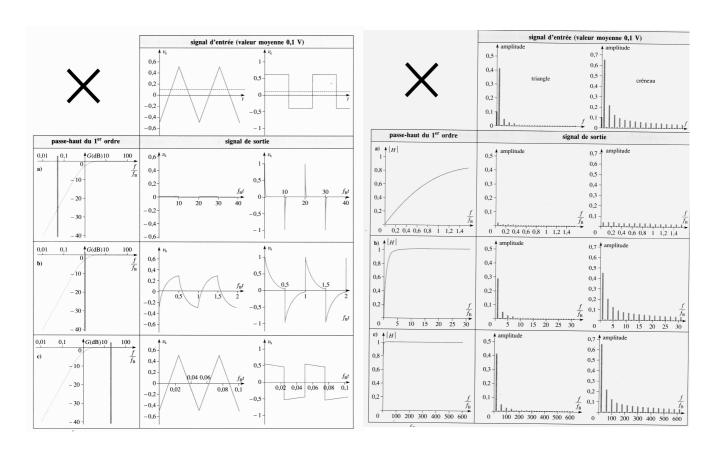
ainsi, si $\underline{e}(t) = \sum_{n=-\infty}^{+\infty} \underline{E}_n . e^{j.n.\omega_0.t}$, on aura en sortie du filtre

$$\underline{\mathbf{s}}(\mathbf{t}) = \sum_{n=-\infty}^{+\infty} \underline{E}_n . G(n.\omega_0) . e^{j(n.\omega_0.t + \varphi(n.\omega_0))}$$

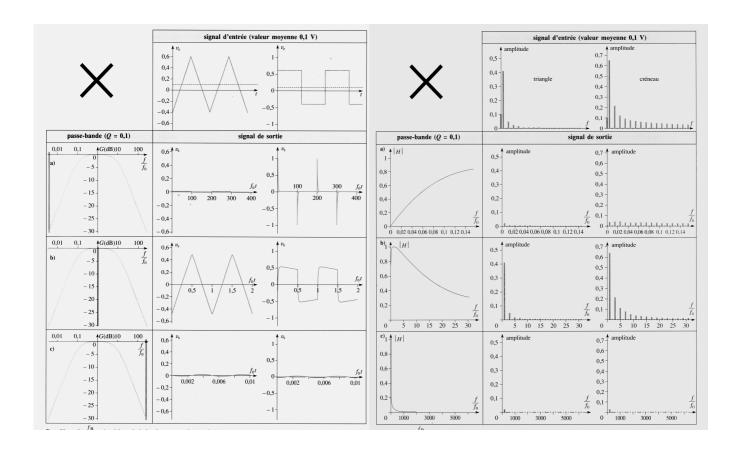
Créneau et Triangulaire filtrés par un passe-bas



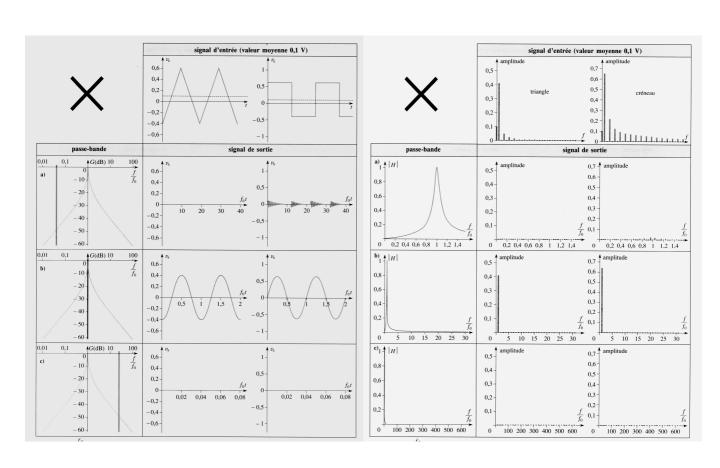
Créneau et Triangulaire filtrés par un passe-haut



Créneau et Triangulaire filtrés par un passe-bande peu sélectif



Créneau et Triangulaire filtrés par un passe-bande sélectif



Caractère dérivateur d'un filtre

Les conditions pour qu'un filtre présente un caractère dérivateur sur un signal de spectre fréquentiel $[\omega;n\omega]$ (n représente le rang du dernier harmonique non négligeable) sont donc :

- un déphasage introduit par le filtre voisin de $\left[+\frac{\pi}{2} \right]$ (ou de $-\frac{\pi}{2}$ <u>s'il y a inversion du signal</u>),

- un gain du type : $g_{dB} = +20\log_{10}\left(\frac{\omega}{\omega_c}\right)$, avec une <u>pente de + 20 dB/décade</u>, dans tout le spectre $[\omega; n\omega]$.

Le signal de sortie s'écrit alors : $s(t) = \frac{1}{\omega_c} \frac{de}{dt}$ si le déphasage est $+\frac{\pi}{2}$ et

$$s(t) = -\frac{1}{\omega_c} \frac{de}{dt}$$
 s'il est de $-\frac{\pi}{2}$

Cette condition est vérifiée pour les filtres <u>passe-haut d'ordre 1</u> et <u>passe-bande d'ordre 2</u> si $n\omega \ll \omega_{cB}$ (pulsation de coupure basse). La condition est plus contraignante que pour les intégrateurs : typiquement $\omega \ll \frac{\omega_{cB}}{100}$.

(Le filtre passe bande doit de plus être peu sélectif).

Caractère intégrateur d'un filtre

Les conditions pour qu'un filtre présente un caractère intégrateur sur un signal de spectre fréquentiel $[\omega; n\omega]$ (n représente le rang du dernier harmonique non négligeable) sont donc :

- un déphasage introduit par le filtre voisin de $\left[-\frac{\pi}{2}\right]$ (ou de $+\frac{\pi}{2}$ s'il y a inversion du signal),

- un gain du type : $g_{dB} = -20 \log_{10} \left(\frac{\omega}{\omega_c} \right)$, avec une <u>pente de - 20 dB/décade</u>, dans tout le spectre $[\omega; n\omega]$.

Le signal de sortie s'écrit alors : $s(t) = \omega_c \int e(t)dt$ si le déphasage est $-\frac{\pi}{2}$ et

$$s(t) = -\omega_c \int e(t)dt$$
 s'il est de $+\frac{\pi}{2}$

Cette condition est vérifiée pour les filtres <u>passe-bas d'ordre 1</u> et <u>passe-bande d'ordre 2</u> si $\omega \gg \omega_{cH}$ (pulsation de coupure haute). En général $\omega > 10\omega_{cH}$ suffit.