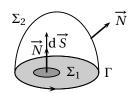
L'ESSENTIEL SUR LE ROTATIONNEL

Contour et surface orientés

Un contour est une courbe fermée. On l'oriente arbitrairement en lui associant un sens de parcours. L'orientation du contour définit l'orientation de toute surface s'appuyant sur Γ^5 . Le vecteur surface élémentaire est défini par $\overrightarrow{dS} = \overrightarrow{dSN}$, où \overrightarrow{N} est le vecteur normal unitaire à la surface orientée.



- ➤ Le choix de l'orientation du contour ou de la surface est arbitraire, mais on ne peut pas orienter indépendamment le contour et la surface.
- \blacktriangleright Par convention, on oriente une surface fermée vers l'extérieur (le vecteur \overrightarrow{N} est dirigé vers l'extérieur de la surface).

Circulation d'un champ vectoriel

La circulation du champ vectoriel $\overrightarrow{A}(M)$ d'un point P à un point Q le long d'une courbe orientée Γ est par définition

$$\mathcal{C}_{PQ} = \int_{P}^{Q} \overrightarrow{A}(M) \, d\overrightarrow{l}$$
.

L'opérateur rotationnel

Définition

Soient $\overrightarrow{A}(M)$ un champ vectoriel, et $d\Gamma$ un contour élémentaire entourant le point M. Si dS est une surface élémentaire s'appuyant sur $d\Gamma$, le flux du rotationnel du champ vectoriel $\overrightarrow{A}(M)$ à travers dS est égal à la circulation élémentaire $d\mathbb{C}$ de \overrightarrow{A} le long de $d\Gamma$:

$$d\mathcal{C} = \overrightarrow{rot} \overrightarrow{A}(M) \cdot d\overrightarrow{S}$$

Composantes

$$\begin{array}{l} \text{Cart\'esiennes}: \overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \overrightarrow{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \overrightarrow{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \overrightarrow{e}_z. \\ \text{Cylindriques}: \overrightarrow{\operatorname{rot}} \overrightarrow{A} = \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z} \right) \overrightarrow{e}_r + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) \overrightarrow{e}_\theta + \frac{1}{r} \left(\frac{\partial (rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right) \overrightarrow{e}_z. \\ \text{Sph\'eriques}: \overrightarrow{\operatorname{rot}} \overrightarrow{A} = \frac{1}{r \sin \theta} \left(\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi} \right) \overrightarrow{e}_r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial (rA_\phi)}{\partial r} \right) \overrightarrow{e}_\theta + \frac{1}{r} \left(\frac{\partial (rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right) \overrightarrow{e}_\phi. \end{array}$$

Propriétés

- ➤ L'opérateur rotationnel s'applique à un champ vectoriel qu'il transforme en un champ vectoriel.
- ➤ Cet opérateur est linéaire.

Interprétation physique

Un champ de vecteurs dont le rotationnel est non nul en un point « effectue une rotation » autour de ce point, puisque sa circulation sur tout contour associé au point est non nulle. Le rotationnel renseigne sur le caractère « tourbillonnaire » du champ.

^{5.} Un tire-bouchon dont le manche tourne selon l'orientation du contour Γ avance dans le sens de \overrightarrow{N} , orientation de la surface s'appuyant sur le contour.

Théorème de Stokes-Ampère

La circulation d'un champ vectoriel \overrightarrow{A} le long d'un contour fermé Γ est égale au flux de son rotationnel à travers toute surface Σ s'appuyant sur ce contour, si \overrightarrow{A} est continu sur Σ :

$$\oint_{\Gamma} \overrightarrow{A}(P) \cdot d\overrightarrow{P} = \iint_{\Sigma} \overrightarrow{\operatorname{rot}} \overrightarrow{A}(Q) \cdot d\overrightarrow{S}.$$

 \blacktriangleright Il est remarquable de noter que l'intégrale double, qui fait intervenir les valeurs de $\overrightarrow{A}(M)$ en tout point $M \in \Sigma$, peut être calculée par une intégrale simple ne faisant intervenir que les valeurs de $\overrightarrow{A}(M)$ sur le contour Γ .

Champ à circulation conservative

D'après le théorème de Stokes-Ampère,

$$\oint_{\Gamma} \overrightarrow{A}(P) \cdot d\overrightarrow{P} = 0 \iff \overrightarrow{\operatorname{rot}} \overrightarrow{A} = \overrightarrow{0}.$$

Tout champ à rotationnel identiquement nul est à circulation conservative.

Champ à flux conservatif

Le champ vectoriel \overrightarrow{A} est à flux conservatif si $\oint_{S} \overrightarrow{A}(P) \cdot d\overrightarrow{S} = 0$, $\forall \Gamma$.

➤ Une condition nécessaire et suffisante pour qu'un champ soit à flux conservatif est qu'il soit un champ de rotationnel:

$$\overrightarrow{\text{div } A} = 0 \iff \overrightarrow{\exists R}, \overrightarrow{A} = \overrightarrow{\text{rot } R}$$

➤ Le flux d'un champ à flux conservatif est constant à travers toute section d'un tube de champ.

Champ à circulation conservative

Le champ vectoriel \overrightarrow{A} est à circulation conservative si $\oint_{\Gamma} \overrightarrow{A}(P) \cdot d\overrightarrow{P} = 0 \quad \forall \Gamma$.

➤ Une condition nécessaire et suffisante pour qu'un champ soit à circulation conservative est qu'il soit un champ de gradient:

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \overrightarrow{0} \iff \exists G, \overrightarrow{A} = \overrightarrow{\operatorname{grad}} G$$

Formulaire

Soient a = a(M,T) et b = b(M,t) deux champs scalaires, et $\overrightarrow{A} = \overrightarrow{A}(M,t)$ et $\overrightarrow{B} = \overrightarrow{B}(M,t)$ deux champs vectoriels.

On a les relations:

$$ightharpoonup \overrightarrow{\operatorname{grad}}(ab) = a \overrightarrow{\operatorname{grad}} b + b \overrightarrow{\operatorname{grad}} a;$$

$$\blacktriangleright \operatorname{div}(a\overrightarrow{A}) = a\operatorname{div}\overrightarrow{A} + \overrightarrow{\operatorname{grad}}a \cdot \overrightarrow{A};$$

$$\blacktriangleright \operatorname{div}(\overrightarrow{A} \wedge \overrightarrow{B}) = -\overrightarrow{A} \cdot \overrightarrow{\operatorname{rot}} \overrightarrow{B} + \overrightarrow{B} \cdot \overrightarrow{\operatorname{rot}} \overrightarrow{A};$$

$$ightharpoonup \overrightarrow{rot}(a\overrightarrow{A}) = a\overrightarrow{rot}\overrightarrow{A} + \overrightarrow{grad}a \wedge \overrightarrow{A};$$

$$\overrightarrow{rot}(\overrightarrow{A} \wedge \overrightarrow{B}) = \overrightarrow{A} \operatorname{div} \overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{\operatorname{grad}}) \overrightarrow{B} - \overrightarrow{B} \operatorname{div} \overrightarrow{A} + (\overrightarrow{B} \cdot \overrightarrow{\operatorname{grad}}) \overrightarrow{A};$$

$$ightharpoonup \overrightarrow{rot} \overrightarrow{A} = \overrightarrow{0} \iff \overrightarrow{A} = \overrightarrow{\text{grad}} a.$$