DS 8: Electromagnétisme (et gravitation)

PROBLÈME 1: GRAVITATION ET PESANTEUR

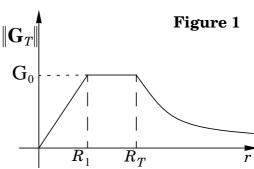
Données numériques :		
Constante de gravitation universelle	$G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$	
Permittivité électrique du vide	$\varepsilon_0 = 8,85 \cdot 10^{-12} \mathrm{F} \cdot \mathrm{m}^{-1}$	
Masse de la Terre	$M_T = 5,98 \cdot 10^{24} \text{ kg}$	
Rayon de la Terre	$R_T = 6,38 \cdot 10^3 \text{ km}$ (quand on supposera la Terre sphérique)	

 $Partie\ I$ - $Attraction\ gravitationnelle\ et\ champ\ de\ pesanteur\ terrestre$

I.A - Le champ de gravitation terrestre

- I.A.1) Exprimer la force électrostatique $\mathbf{F}_{1/2}^e$ exercée par une charge ponctuelle q_1 sur une charge ponctuelle q_2 et faire un schéma précisant clairement les notations utilisées. En déduire le champ électrostatique \mathbf{E} créé par une charge ponctuelle q.
- I.A.2) Énoncer le théorème de Gauss de l'électrostatique.
- I.A.3) Exprimer la force gravitationnelle $\mathbf{F}_{1/2}^g$ exercée par une masse ponctuelle m_1 sur une masse ponctuelle m_2 . En déduire le champ gravitationnel \mathbf{G} créé par une masse ponctuelle m.
- I.A.4) Dresser un tableau présentant les analogies entre les grandeurs électrostatiques et les grandeurs gravitationnelles. En déduire le théorème de Gauss pour le champ gravitationnel créé par une distribution de masses quelconques.
- I.A.5) Application : dans un premier temps, on assimile la Terre à une sphère de centre O, de rayon R_T et de masse M_T uniformément répartie dans tout le volume.
- a) Déterminer le champ gravitationnel terrestre \mathbf{G}_T en tout point M de l'espace et représenter graphiquement $\|\mathbf{G}_T\|$ en fonction de r = OM.
- b) Calculer $\mathbf{G}_0 = \|\mathbf{G}_T\|$ à la surface de la Terre.

En réalité la masse M_T n'est pas uniformément répartie. Dans un modèle plus élaboré dans lequel on suppose la symétrie sphérique conservée, les variations de $\|\mathbf{G}_T\|$ sont représentées sur la figure 1 avec $R_1 = 3,50 \cdot 10^3$ km .



- c) Justifier que le champ gravitationnel à la surface de la Terre n'est pas modifié.
- d) Justifier que dans ce modèle, on considère le noyau terrestre $(0 < r < R_1)$ comme homogène. Calculer sa masse volumique moyenne.
- e) Dans le manteau terrestre $(R_1 < r < R_T)$, la masse volumique est-elle supposée fonction croissante ou décroissante de r? Justifier.

I.B - Le champ de pesanteur terrestre

En première approximation, le poids $m\mathbf{g}$ d'un point matériel de masse m est la résultante de la force de gravitation exercée par la Terre et de la force d'inertie d'entraînement du référentiel terrestre par rapport au référentiel géocentrique.

- I.B.1) Définir un référentiel galiléen. Définir les référentiels géocentrique et terrestre.
- I.B.2) Expliquer à l'aide d'un schéma pourquoi le jour sidéral (période T de rotation propre de la Terre) diffère du jour solaire moyen $T_0 = 24\,\mathrm{h}$ (durée entre deux passages successifs du Soleil au zénith).

Évaluer en minutes l'ordre de grandeur de $T_0 - T$.

Quel que soit le résultat trouvé précédemment, on prendra $\Omega = 7,29 \cdot 10^{-5} \, \mathrm{rad \cdot s}^{-1}$ comme vitesse angulaire de rotation du référentiel terrestre dans le référentiel géocentrique.

- I.B.3) Exprimer en un point M de latitude λ , le champ de pesanteur terrestre $g = \|\boldsymbol{g}\|$ à la surface de la Terre en fonction de G (constante de gravitation universelle), M_T , R_T , Ω et λ . On pourra faire toute approximation jugée utile.
- I.B.4) Calculer les valeurs extrémales de g. Quelle erreur relative maximale commet-on si l'on confond champ de pesanteur terrestre et champ de gravitation terrestre ?
- I.B.5) Quelle devrait être la durée du jour sidéral pour qu'il existe des lieux de pesanteur nulle à la surface de la Terre ?

PROBLÈME 2 : ÉLECTRON DANS UN PIÈGE DE PENNING

Données numériques			
Charge d'un électron (valeur absolue)	$q = 1, 6 \cdot 10^{-19} \mathrm{C}$	Vitesse de la lumière dans le vide	$c = 3 \cdot 10^8 \mathrm{m \cdot s}^{-1}$
Masse d'un électron	$m = 9, 1 \cdot 10^{-31} \text{kg}$	Perméabilité du vide	$\mu_0 = 4\pi \cdot 10^{-7} \mathrm{H} \cdot \mathrm{m}^{-1}$

Ce problème porte sur l'étude sommaire du confinement d'un électron (de masse m et de charge -q) dans une petite région de l'espace à l'aide d'un champ électromagnétique. On se place dans le cadre de la mécanique newtonienne et on néglige toutes les forces autres que les forces électromagnétiques. L'électron se déplace dans le référentiel $\mathcal{R}(Oxyz)$, supposé galiléen ; on appelle respectivement $\overrightarrow{e_x}$, $\overrightarrow{e_y}$, $\overrightarrow{e_z}$ les vecteurs unitaires des axes Ox, Oy et Oz. Suivant les questions, on repérera un point M de l'espace par ses coordonnées cartésiennes (x,y,z) ou cylindriques (r,θ,z) avec $r=\sqrt{x^2+y^2}$.

Partie I - Mouvement de l'électron dans un champ magnétique uniforme

L'électron, se déplaçant dans le vide, est soumis à l'action d'un champ magnétique \overrightarrow{B} uniforme et permanent (indépendant du temps). Le champ magnétique \overrightarrow{B} est colinéaire à Oz: $\overrightarrow{B} = \overrightarrow{Be_z}(B>0)$. On pose $\omega_c = qB/m$.

À l'instant initial, l'électron se trouve en O avec la vitesse $\overrightarrow{v_0} = \overrightarrow{v_{ox}e_x} + \overrightarrow{v_{oz}e_z}$ ($\overrightarrow{v_{ox}}$ et $\overrightarrow{v_{oz}}$ désignent des constantes positives).

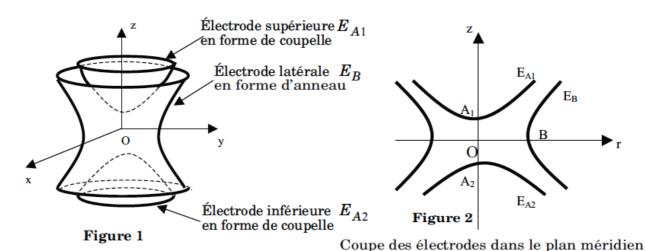
- **I.A** Déterminer la coordonnée z(t) de l'électron à l'instant t.
- I.B On étudie la projection du mouvement de l'électron dans le plan Oxy.
- I.B.1) Déterminer les composantes v_x et v_y de la vitesse de l'électron en fonction de v_{ox} , ω_c et du temps t.
- I.B.2) En déduire les coordonnées x(t) et y(t) de l'électron à l'instant t.
- I.B.3) Montrer que la projection de la trajectoire de l'électron dans le plan Oxy est un cercle Γ de centre H et de rayon r_H . Déterminer les coordonnées x_H et y_H de H, le rayon r_H et la fréquence de révolution f_c de l'électron sur ce cercle en fonction de v_{ox} et ω_c . Tracer, avec soin, le cercle Γ dans le plan Oxy. Préciser en particulier le sens de parcours de l'électron sur Γ .
- **I.C** Application numérique : calculer la fréquence f_c pour B = 1,0 T.
- **I.D** Tracer l'allure de la trajectoire de l'électron dans l'espace. L'électron est-il confiné au voisinage de O?

Partie II - Mouvement de l'électron dans un champ électrique quadrupolaire

À l'aide d'électrodes de forme appropriée (cf figures 1 et 2), on crée autour du point O, dans une zone vide de charges, un champ électrostatique \overrightarrow{E} quadrupolaire de révolution autour de l'axe Oz, dérivant du potentiel :

$$U(x, y, z) = \alpha_0 + \alpha_1(x^2 + y^2) + \alpha_2 z^2$$
 où α_0 , α_1 et α_2 sont des constantes.

On peut également mettre U sous la forme $U(r,z) = \alpha_0 + \alpha_1 r^2 + \alpha_2 z^2$.

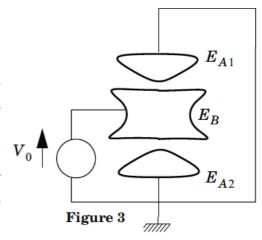


II.A - Étude du potentiel U et du champ \vec{E}

II.A.1) À quelle équation aux dérivées partielles doit satisfaire le potentiel U ?

II.A.2) En déduire une relation entre α_2 et α_1 .

II.A.3) Les surfaces internes des 2 électrodes E_{A1} et E_{A2} , de révolution autour de Oz, ont pour équation : $r^2 - 2z^2 = -2z_0^2$ (les points A_1 et A_2 de la figure 2 ont respectivement pour ordonnées $+z_0$ et $-z_0$ sur l'axe Oz). Ces 2 électrodes sont au potentiel nul (cf figure 3). La surface interne de l'électrode latérale E_B également de révolution autour de Oz, a pour équation : $r^2 - 2z^2 = r_0^2$ (le point B de la figure 2 est à la distance r_0 de l'axe Oz). Cette électrode est au potentiel $V_0(V_0>0)$. On définit la constante positive d par $4d^2 = r_0^2 + 2z_0^2$.



Exprimer le potentiel U(r,z) en fonction de d, z_0 , V_0 , r et z.

II.A.4) Représenter, au voisinage du point O, dans le plan méridien rOz (voir Figure 2), les lignes équipotentielles (préciser en particulier les lignes équipotentielles qui passent par O) et les lignes de champ en justifiant brièvement le schéma. Préciser également le sens du champ \vec{E} sur les lignes de champ.

II.A.5) Représenter, au voisinage du point O, dans le plan Oxy, les lignes équipotentielles et les lignes de champ, en précisant le sens du champ \overrightarrow{E} sur les lignes de champ.

II.A.6) Calculer les composantes cartésiennes E_x , E_y et E_z du champ \overrightarrow{E} en un point M en fonction de d, V_0 , x, y, z.

II.B - On considère le mouvement de l'électron dans le champ quadrupolaire

II.B.1) Écrire les trois équations différentielles du mouvement en projection sur les axes Ox, Oy et Oz. On introduira la constante

$$\omega_0 = \sqrt{\frac{qV_0}{md^2}}.$$

II.B.2) Montrer que le mouvement de l'électron suivant Oz (mouvement longitudinal) est périodique et déterminer sa fréquence f_0 en fonction de ω_0 .

II.B.3) Application numérique : $r_0=3,0~{\rm mm}$, $z_0=2,0~{\rm mm}$, $V_0=10~{\rm V}$. Calculer f_0 . Comparer les valeurs numériques de f_0 et de f_c .

II.B.4) Montrer que le mouvement de l'électron dans le plan *Oxy* (mouvement transversal) n'est pas borné. Il n'y a donc pas confinement de l'électron au voisinage de *O* dans le champ quadrupolaire.

Partie III - Mouvement de l'électron dans les champs magnétique et électrique

L'électron est maintenant soumis simultanément au champ magnétique \vec{B} de la Partie I et au champ électrique quadrupolaire \vec{E} de la Partie II.

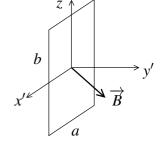
- **III.A** Écrire les trois équations différentielles du mouvement en projection sur les axes Ox, Oy et Oz. On utilisera les constantes ω_c et ω_0 .
- ${\bf III.B}$ Montrer que le mouvement longitudinal suivant l'axe Oz , déterminé à la question II.B.2) n'est pas modifié.
- **III.C** Pour déterminer le mouvement transversal dans le plan Oxy, on utilise la variable complexe $\underline{u} = x + iy$.
- III.C.1) Écrire l'équation différentielle vérifiée par \underline{u} .
- III.C.2) Montrer que l'électron sera confiné autour de O si la pulsation ω_c est supérieure à une certaine valeur ω_{c0} que l'on exprimera en fonction de ω_0 . En déduire la valeur minimale B_0 de B qui permet le confinement de l'électron. Exprimer B_0 en fonction de V_0 , d, m et q.
- III.C.3) On suppose dorénavant $\omega_c \gg \omega_0$, ce qu'indiquaient les valeurs numériques précédentes. Déterminer, dans ce cas, u en fonction de deux pulsations ω_1 et ω_2 , $(\omega_1 < \omega_2)$ du temps t et de deux constantes d'intégration A_1 et A_2 qu'on ne cherchera pas à déterminer (la constante A_1 est associée à la pulsation ω_1 et la constante A_2 à la pulsation ω_2). Exprimer ω_1 et ω_2 en fonction de ω_0 et ω_c (compte tenu de $\omega_c \gg \omega_0$).
- III.C.4) Application numérique : calculer les fréquences f_1 et f_2 associées aux pulsations ω_1 et ω_2 .
- III.C.5) Montrer qu'à chaque pulsation ω_1 ou ω_2 est associé un mouvement circulaire de l'électron.
- **III.D** Le mouvement de l'électron apparaît donc comme la superposition de trois mouvements : (1) un mouvement circulaire à la pulsation ω_1 dans le plan Oxy; (2) un second mouvement circulaire à la pulsation ω_2 dans le plan Oxy; (3) un mouvement sinusoïdal longitudinal à la pulsation ω_0 le long de l'axe Oz. Compte tenu des valeurs numériques des différentes pulsations et en supposant A_2 nettement plus petit que A_1 , tracer l'allure de la projection de la trajectoire de l'électron dans le plan Oxy, puis l'allure générale de la trajectoire dans l'espace.

(Rq: dans la mesure où une particule chargée rayonne (et donc perd) son énergie dès qu'elle a un mouvement présentant une accélération non nulle, la particule perdra rapidement sa vitesse restera piégée. Pour en savoir plus: voir les deux documents postés sur mon site « Piéger et observer un seul atome » par Claude Cohen-Tannoudji et « Expérience isoltrap »)

EXERCICE 3 : Spire tournant dans un champ magnétostatique

On considère une spire rectangulaire de côté a et b, pouvant tourner autour de l'axe Oz; on néglige les frottements. Cette spire, de résistance électrique R, est plongée dans un champ magnétique \overrightarrow{B} uniforme et stationnaire.

Elle est aussi soumise à un couple de rappel (constante de torsion C).



- 1. Quelle est l'expression de la fém induite?
- 2. Déterminer l'action exercée par le champ magnétique.
- 3. En déduire l'équation gérant l'évolution de la position angulaire de la spire.

(On néglige l'auto-inductance L de la spire et on note θ l'angle plan entre B et Oy'.

A l'équilibre de la spire θ =0)

EXERCICE 4 : Solénoïde infini dans l'ARQS

On étudie une portion de longueur l de solénoïde d'axe Oz comportant n spires jointives par unité de longueur, dont on néglige la résistance. On note a le rayon des spires et $i(t) = i_0 \cos(\omega t)$ le courant qui les parcourt. On adopte le système des coordonnées cylindriques $M(r, \theta, z)$ et la base associée.

- 1. Donner une condition sur la pulsation ω afin de pouvoir se placer dans l'ARQS.
- ${\bf 2.}~$ On suppose les conditions de l'ARQS magnétique réunies. En déduire l'expression du champ magnétique \overrightarrow{B} en tout point à l'intérieur du solénoïde.
- 3. Justifier que le champ électrique se met sous la forme $\overrightarrow{E} = E(r,t)\overrightarrow{e_{\theta}}$. Quelle est l'expression du champ électrique associé? On donne le rotationnel en coordonnées cylindriques : $\overrightarrow{\operatorname{rot}}\overrightarrow{A} = (\frac{1}{r}\frac{\partial A_z}{\partial \theta} \frac{\partial A_{\theta}}{\partial z})\overrightarrow{U_r} + (\frac{\partial A_r}{\partial z} \frac{\partial A_z}{\partial r})\overrightarrow{U_{\theta}} + \frac{1}{r}(\frac{\partial (rA_{\theta})}{\partial r} \frac{\partial A_r}{\partial \theta})\overrightarrow{U_z}$
- 4. Montrer que la contribution électrique à l'énergie est négligeable devant la contribution magnétique.
- 5. Déterminer l'expression du vecteur de Poynting.
- 6. En choisissant une surface cylindrique de rayon $r=a^-$ et de longueur h, déterminer l'énergie électromagnétique totale associée au solénoïde à l'instant t. En déduire l'expression du coefficient d'auto-induction.
- 7. Vérifier le bilan énergétique.

Données numériques et mathématiques utiles

Constantes universelles:

- célérité de la lumière dans le vide : $c = 3,0.10^8 \text{ m.s}^{-1}$

- perméabilité magnétique du vide : $\mu_0 = 4\pi.10^{-7} \text{ S.I.}$

- permittivité diélectrique du vide : $\varepsilon_0 = \frac{1}{36\pi.10^9} \text{ S.I.}$

- masse de l'électron : $m_e = 9,1.10^{-31} \text{ kg}$

- charge élémentaire : $e = 1,6.10^{-19}$ C

- charge de l'électron : $q_e = -e = -1,6.10^{-19} \text{ C}$

- accélération de la pesanteur : $g = 9.8 \text{ m.s}^{-2}$

PROBLEME 1:

- opérateur divergence **en symétrie sphérique**: $div(\overrightarrow{A}) = \frac{1}{r^2} \cdot \frac{\partial(r^2 \cdot A_r)}{\partial r}$
- La force d'inertie d'entraînement centrifuge exercée sur une masse m à la surface du globe et due à la rotation à la vitesse angulaire Ω du référentiel terrestre relativement au référentiel géocentrique s'écrit :

$$\overrightarrow{F} = m \cdot \Omega^2 \cdot \rho \cdot \overrightarrow{e_\rho}$$
 avec ρ la distance à l'axe de rotation (fonction de la latitude λ)