
TD Ec1-1: Révisions: électrocinétique PTSI

EXERCICE 1: Dipôles mystères

2) Détermination des caractéristiques d'un quadripôle

Un quadripôle, constitué de deux dipôles D_1 et D_2 , contient en tout une résistance R, un condensa teur C et une bobine d'inductance L. On réalise les mesures suivantes :

- 1. on relie l'entrée à une pile de f.é.m. $E_0=15\,\mathrm{V}$, la sortie étant ouverte. On mesure, en régime établi, une intensité $I_0=15\,\mathrm{mA}$.
- 2. On remplace le générateur continu par un générateur sinusoïdal, et on fait une étude en fréquence de la réponse du système. On note <u>H</u> = <u>s/e</u> la fonction de transfert harmonique. L'expérience montre:
 - qu'il s'agit d'un filtre passe-bande dont le gain passe par une valeur maximale à la fréquence $f_0 = 1, 16 \,\text{kHz}$;
 - que la bande passante à -3 dB vaut $\Delta f = 0,34 \, \mathrm{kHz}.$

Déterminer le schéma du quadripôle et la valeur numérique de ses composants.

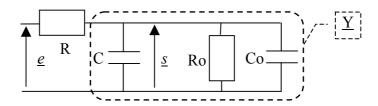
EXERCICE 2 : Influence du générateur et de l'oscilloscope sur l'étude de circuit RL et RC (d'après Petites Mines 2008)

1.On a branché un GBF délivrant une tension continue E sur une association RL parallèle de telle façon que le régime permanent soit établi.(Le GBF est assimilé à un modèle de Thévenin [e(t), Rg] en basse fréquence et [E,Rg] en continu.)

A l'instant t=0, on «éteint» le générateur de telle façon que e(t≥0)=0 (il n'est pas court-circuité).

On note:

- u(t) la tension aux bornes de l'association RL parallèle
- i(t) l'intensité du courant sortant du GBF (convention générateur)
- $i_1(t)$ l'intensité du courant traversant l'inductance L
- 1.1.Déterminer, en fonctions des données, les valeurs littérales des :
 - tension u(0-)
 - intensités i(0) $i_1(0)$
- 1.2. Etablir l'équation différentielle de u(t) pour t ≥ 0 et faire apparaître la constante de temps τ du circuit
- 1.3.Montrer qu'une équivalence Thévenin-Norton aurait donné immédiatement cette constante de temps.
- 1.4. Déterminer complètement u($t \ge 0$) et en donner l'allure sur l'intervalle $[-10\tau, +10\tau]$
- 1.5.Connaissant E et Rg, comment utiliser le relevé expérimental précédent pour déterminer R et L ?


2.La détermination de E et Rg s'est faite de la manière suivante : on a sélectionné un signal de tension continu et on a branché à ses bornes un voltmètre d'impédance d'entrée suffisamment élevée pour l'approximer infinie lors de cette mesure. En l'absence de résistance d'utilisation, on a mesuré 6V et en présence de $Ru=50\Omega$, on a mesuré 3V.

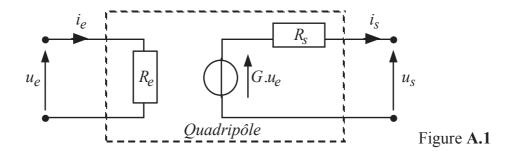
Donner les valeurs de E et Rg.

- 3.On substitue la résistance d'utilisation par une association série RC et le GBF délivre désormais un signal sinusoïdal de pulsation ω réglable.
 - 3.1.Y-a-t-il une impédance interne minimale du GBF ? Si oui, que vaut-elle ?
 - 3.2.A quelle condition pourra-t-on considérer le générateur idéal dans cette expérience ?

On supposera cette condition remplie dans la suite, avec R=4,7 k Ω et C=22nF.

- 4.En l'absence d'oscilloscope branché sur le circuit, déterminer la fonction de transfert complexe en tension (à vide), la sortie étant prise sur le condensateur. De quel filtrage s'agit-il ? Comment définit-on la fréquence de coupure d'un filtre comme celui-ci ? La calculer numériquement.
- 5. On utilise alors un oscilloscope numérique pour la visualisation du signal aux bornes du condensateur. On lit sur l'entrée coaxiale de l'appareil «1 $M\Omega$, 25 pF» et on désignera par R_0 et C_0 les valeurs correspondantes. Cet appareil, branché sur le filtre étudié, induit la représentation suivante du circuit linéaire :

- 5.1.Déterminer **simplement** le gain en tension à basse fréquence
- 5.2.Exprimer l'admittance complexe **Y**
- 5.3. Quelle est la limite du déphasage de **s** par rapport à **i** (traversant R) à basse fréquence ?
- 5.4. Déterminer la nouvelle fonction de transfert $\underline{H}' \equiv \frac{\underline{s}}{\underline{e}}$ (à présenter sous forme canonique

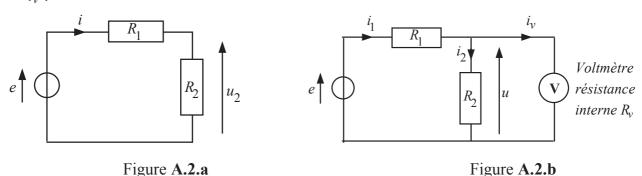

$$\underline{H'} = \frac{H'_0}{1 + j.\frac{\omega}{\omega'_0}})$$

- 5.5.Comparer H'₀ et la nouvelle fréquence de coupure f'₀ aux valeurs de la question 4. Conclure quant à l'utilisation de l'oscilloscope pour étudier le filtre RC
- 5.6. Construire un mode opératoire pour confirmer les valeurs «1 M Ω , 25 pF» à l'aide d'un rhéostat 0-1M Ω

EXERCICE 3 : Insertion d'un quadripôle entre un générateur réel et une charge résistive

Le but de cet exercice est d'établir le schéma électrique équivalent d'un amplificateur réel de tension.

Le schéma équivalent fait intervenir les résistances d'entrée R_e et de sortie R_s . L'opérateur quadripolaire (deux bornes d'entrée et deux bornes de sortie) amplifie la tension sinusoïdale d'entrée u_e : son gain (intensité i_s nulle ou non) s'écrit $G = U_s/U_e$ avec U_e et U_s , respectivement tensions efficaces d'entrée et de sortie (figure A.1). La résistance des fils de connexion est négligée.



Remarque : pour compenser l'énergie consommée, l'opérateur est connecté à des sources d'alimentation qui ne sont pas représentées sur les schémas.

I. Préliminaires: indications données par un voltmètre

Deux résistors, de résistances respectives R_1 et R_2 , sont montés en série avec une source indépendante de tension, de f.é.m. e constante (figure **A.2.a**).

- 1. Donner, en fonction de e, R_1 et R_2 , l'expression de la tension u_2 aux bornes du résistor de résistance R_2 .
- **2.** Comment se nomme ce type de montage ?
- 3. Afin de mesurer la tension aux bornes du résistor de résistance R_2 , un voltmètre, noté V et de résistance interne R_v , est branché en dérivation. Parcouru par le courant d'intensité i_v , l'appareil indique la tension u (figure **A.2.b**). Etablir, en fonction de e, R_1 , R_2 et R_v , l'expression de la tension u.
- **4.** Pour quelle valeur de la résistance interne R_v , le voltmètre indique-t-il une tension u identique à la valeur u_2 , tension calculée à la question **A.I.1** ? Quelle est, dans ce cas, la valeur de l'intensité i_v ?

II. Etude expérimentale d'un opérateur quadripolaire réel

Le montage, décrit par la figure **A.3**, est alimenté par un générateur de tension alternative sinusoïdale $e(t) = E\sqrt{2}\cos(\omega t)$ « basses fréquences » (GBF). La tension aux bornes de l'association série « source e(t) – résistor de résistance variable R (avec $0 \Omega \le R \le 10^6 \Omega$) » vaut u_e (tension d'entrée). Les bornes de sortie sont susceptibles, par fermeture de l'interrupteur **K**, d'être reliées à un résistor de charge, de résistance R_c .

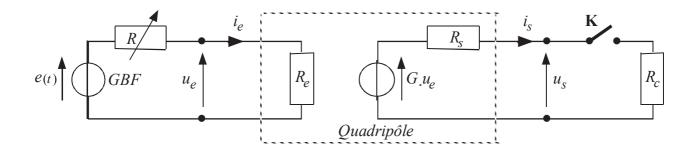


Figure A.3

Trois séries de mesures, numérotées (1), (2) et (3), sont effectuées avec un voltmètre électronique d'impédance interne considérée comme infinie. Les tensions efficaces $U_{e,i}$ et $U_{s,i}$ mesurées (avec i indice correspondant à la i^e série de mesures) sont consignées dans le tableau 1 ci-dessous :

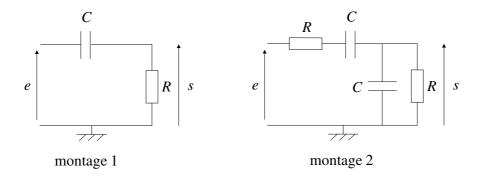
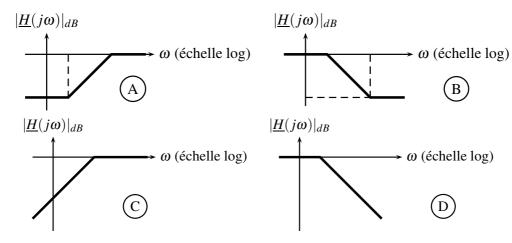
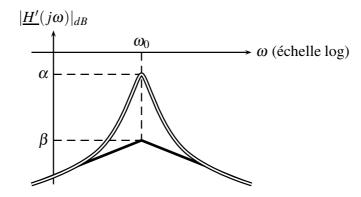

Série de mesures	Interrupteur K	Résistance R	Tension U_e	Tension U_s
(1)	K ouvert	$R = 0 \Omega$	$U_{e,1} = 1,20 \text{ V}$	$U_{s,1} = 12,0 \text{ V}$
(2)	K fermé	$R = 0 \Omega$	$U_{e,2} = ?$	$U_{s,2} = 9,60 \text{ V}$
(3)	K ouvert	$R = 1,00 \times 10^6 \Omega$	$U_{e,3} = ?$	$U_{s,3} = 7,20 \text{ V}$

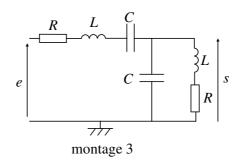
Tableau 1


Les données de l'énoncé sont les grandeurs : R, R_c , $U_{e,1}$, $U_{s,1}$, $U_{s,2}$ et $U_{s,3}$.

- 1. Montrer que les trois séries de mesures permettent d'aboutir aux expressions des grandeurs G, R_s et R_e , en fonction de certaines données de l'énoncé.
- **2.** Applications numériques : $R_c = 1,00 \times 10^2 \,\Omega$.
 - a) Calculer le gain G, la résistance d'entrée R_e et la résistance de sortie R_s .
 - b) Déterminer les deux valeurs manquantes $U_{e,2}$ et $U_{e,3}$ du tableau 1 ci-dessus.

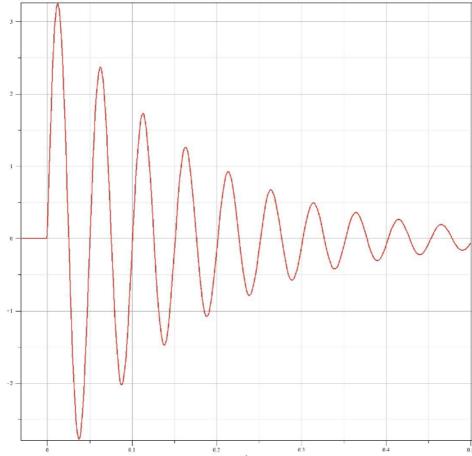

EXERCICE 4: Étude et utilisation de filtres. (ENSAIT 2002)

- 1. Déterminer la fonction de transfert \underline{H} du montage 1.
- 2. Préciser la nature du filtre.
- 3. Définir le sens de variation du gain.
- **4.** Quel est le diagramme de Bode en amplitude qui correspond au filtre ? A, B ? C, D (représentés page suivante) ? Préciser la(les) pulsation(s) de cassure et la(les) pente(s).



- 5. Déterminer la valeur à donner à la capacité C pour que la tension de sortie soit affaiblie de 6 dB par rapport à la tension d'entrée lorsque celle-ci est un signal sinusoïdal de fréquence 1,0 kHz et que $R=10,0 \text{ k}\Omega$.
- **6.** Déterminer la fonction de transfert $\underline{H'}$ du montage 2.
- 7. Préciser la nature du filtre.
- **8.** L'écrire sous la forme canonique.
- 9. L'allure du diagramme de Bode en amplitude est la suivante :

Préciser la valeur des pentes et la pulsation de cassure.


- **10.** En prenant les mêmes valeurs que précédemment pour R et C, donner la valeur de la fréquence de résonance.
- 11. Pour une fréquence $f=1,0\,\mathrm{kHz}$, donner la valeur du gain pour le fondamental et les harmoniques d'ordre inférieure ou égal à 10.
- **12.** Que peut-on en conclure sur l'influence du filtre sur un signal de fréquence f?
- **13.** On considère le filtre du montage 3. Sur quelle fréquence est-il accordé sachant que la fréquence d'accord est la fréquence de résonance en intensité du circuit R, L, C série ?

- **14.** Calculer les impédances du circuit R, L, C série et du circuit R, L série en parallèle avec C à la fréquence d'accord.
- **15.** On applique une tension sinusoïdale de valeur efficace 0,5 V et de fréquence la fréquence d'accord. Déterminer la tension de sortie du filtre à la fréquence d'accord.

EXERCICE 5 : Rétroanalyse de filtre par sa réponse indicielle

La réponse d'un filtre du second ordre à un échelon de tension de 5V est la suivante :

- 1. Montrer qu'il ne peut s'agir que d'un passe-bande
- 2. Déterminer les constantes de cette forme canonique :

$$H(p) := \frac{H0 \cdot \frac{\tau \cdot p}{Q}}{1 + \frac{\tau \cdot p}{Q} + p^2 \cdot \tau^2}$$