Mélanges diphasés Utilisation des diagrammes d'état

Application 3: Etude de la vapeur saturante du mercure Hg

Soit l'équilibre liquide-vapeur de changement d'état du mercure : $Hg_{liq} \rightleftarrows Hg_{vap}$. La mesure de la pression de vapeur saturante, notée P_S , à différentes températures a permis d'établir la loi expérimentale de Dupré :

$$\log P_{\rm S} = A - \frac{2010}{T} + 3,88 \log T$$

avec $P_{\rm S}$ en bar, Ten kelvin, log le logarithme décimal et A une constante.

1 a. À partir des données ci-dessous, déterminer la valeur moyenne de la constante A.

$T(\mathbf{K})$	373	473	573	673
$P_{\rm S}$ (bar)	8,00 · 10-4	$2,80 \cdot 10^{-2}$	0,330	2,10

Donner l'allure de la courbe donnant l'évolution de P_S avec la température.

b. Exprimer, en fonction de *T*, le coefficient directeur de la tangente à la courbe de l'équilibre liquide-vapeur du mercure.

c. Le coefficient directeur peut être exprimé en fonction de la chaleur latente de vaporisation massique $L_{\rm v}(T)$ et des volumes massiques de la vapeur $v_{\rm v}(T)$ et du liquide $v_{\ell}(T)$. Rappeler la formule correspondante.

d. Calculer ce coefficient, à la température T = 573 K, par les deux méthodes précédentes. Comparer les deux valeurs obtenues.

Application numérique : $L_{\rm v}(573~{\rm K}) = 297~{\rm kJ}\cdot{\rm kg}^{-1}$; $v_{\rm v}(573~{\rm K}) = 0,700~{\rm m}^3\cdot{\rm kg}^{-1}$; $v_{\ell}(573~{\rm K}) = 7,7\cdot10^{-5}~{\rm m}^3\cdot{\rm kg}^{-1}$.

Un récipient de volume V_0 constant contient initialement une masse m_0 de mercure. Les parois sont parfaitement calorifugées sauf en un endroit où un résistor, parcouru par un courant électrique, permet un apport d'énergie thermique. On négligera la capacité thermique du récipient ainsi que celle du résistor. Ce résistor sera considéré comme un thermostat à la température T_3 . Cette source thermique est capable d'apporter l'énergie thermique Q nécessaire au passage du corps pur de la température T_1 à la température T_2 . On appelle x la fraction massique de la vapeur dans le récipient.

Application numérique : T_1 = 573 K ; T_2 = 673 K ; T_3 = 800 K ; V_0 = 1 m³ ; m_0 = 8 kg.

Masse molaire du mercure : $M = 200 \text{ g} \cdot \text{mol}^{-1}$.

Constante des gaz parfaits : $R = 8.31 J \cdot K^{-1} \cdot mol^{-1}$.

a. La température est T_1 . Calculer la masse initiale m_{v_1} de vapeur à l'équilibre. En déduire la fraction massique de vapeur initiale x_1 .

b. La température est T_2 . Calculer la masse finale m_{v_2} de vapeur.

En déduire la fraction massique de vapeur finale x_2 .

3 a. Représenter la transformation du corps pur, de l'état initial à l'état final, dans le diagramme P = f(V) (diagramme des isothermes d'Andrews) ainsi que dans le diagramme P = f(T).

b. Calculer le transfert thermique Q reçu par le mercure au cours de la transformation.

Application numérique : $c_{p_{\rm liq}} = 0.135 \, {\rm kJ \cdot K^{-1} \cdot kg^{-1}}$; $c_{p_{\rm vap}} = 0.104 \, {\rm kJ \cdot K^{-1} \cdot kg^{-1}}$ (ces capacités thermiques sont considérées indépendent de la considérée de la co dantes de la température entre 573 K et 673 K). $L_{\rm v}(573\,{\rm K}) = 297\,{\rm kJ\cdot kg^{-1}}$; $L_{\rm v}(673\,{\rm K}) = 293.7\,{\rm kJ\cdot kg^{-1}}$.

4 Calculer la variation d'entropie du mercure ΔS au cours de la transformation. Y a-t-il création d'entropie dans l'Univers ? Si oui, calculer sa valeur $\Delta S_{\text{Univers}}$.

Application 4: Transformations d'un mélange diphasé

- 1. Une masse m= 1kg de vapeur d'eau juste saturante subit une évolution adiabatique réversible de $p_1=20 \text{ bar à } p_2=0.5 \text{ bar.}$
 - 1.1. Montrer que la transformation est isentropique.
 - 1.2. Donner les températures associées grâce au diagramme entropique de la vapeur d'eau.
 - 1.3. Relever le titre massique en vapeur dans l'état final (confirmer la lecture par la règle des moments)
- 2. On souhaite évaluer certaines variations de grandeurs d'état **sans utiliser le diagramme**

entropique. On rappelle la capacité calorifique de l'eau liquide : $c_{(liq)} = 4,18kJ kg^{-1}.K^{-1}$, on donne précisément les températures précédentes (T₁=212°C et T₂=81°C) ainsi que les enthalpies massiques de vaporisation à ces températures :

$$l_V(T_1) = 1850 \text{ kJ kg}^{-1}$$

 $l_V(T_2) = 2270 \text{ kJ kg}^{-1}$

- 2.1. Calculer le titre massique en vapeur dans l'état final
- 2.2.En déduire la variation d'enthalpie accompagnant la transformation.
- 2.3. Au moyen d'hypothèses fortes, évaluer le travail reçu par le kg d'eau pendant la transformation.
- 3. On utilise désormais le diagramme entropique
 - 3.1.Retrouver la variation d'enthalpie
 - 3.2. Repérer (approximativement) le volume massique du mélange diphasé à l'état initial et à l'état final. En déduire la variation d'énergie interne du kg d'eau.
 - 3.3. Calculer la variation d'enthalpie libre pendant la transformation.

Application 5 : Détente isenthalpique puis adiabatique de vapeur d'eau

- 1. Une chaudière contient de l'eau liquide en équilibre avec de la vapeur sous 2 bar. Au sommet de celle-ci, une soupape laisse passer lentement la vapeur au travers un détendeur duquel elle sort sous 1,013 bar (avec un vitesse si faible que l'on peut négliger la variation d'énergie cinétique).
 - 1.1.Comment appelle-t-on ce type de détente? Quelle fonction d'état ne subit pas de variation ? Y aurait-il une variation de température s'il s'agissait d'un gaz parfait ?
 - 1.2. Utiliser le diagramme de Mollier pour repérer :
 - 1.2.1.l'enthalpie massique de la vapeur
 - 1.2.2.la variation de température pendant la détente
 - 1.2.3. l'entropie créée par unité de temps s'il s'échappe 10g/s
- 2. Prenons maintenant 1kg de vapeur d'eau surchauffée à 250°C et sous 5 bar et comparons les états finaux de deux détentes adiabatiques à 1 bar :
 - 2.1. réversible : température finale, titre en vapeur final et variation enthalpique
 - 2.2.irréversible avec une variation enthalpique diminuée de 15%: température et état final, entropie créée par l'irréversibilité.