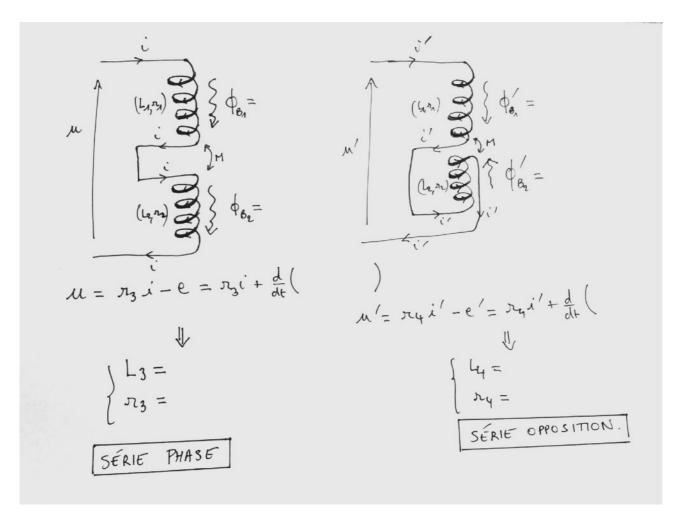
## TP 1: Mesures de couplage inductif « M ou k »

On utilisera deux méthodes différentes pour quantifier précisément le couplage inductif entre deux bobines  $B_1$  et  $B_2$  quasi-identiques accolées.

- La première méthode consistera à mesurer les inductances d'association de ces deux bobines branchées en série (en phase puis en opposition de phase)
- La seconde méthode consistera à utiliser ce couplage inductif dans deux circuits  $L_1, C_1$  et  $L_2, C_2$  quasi-symétriques, couplés de la même façon par la mutuelle M, le circuit 1 étant alimenté par un GBF délivrant un signal sinusoïdal. On tracera des courbes de résonance en tension pour déduire le coefficient de couplage k des mesures de fréquences de résonance et d'anti-résonance.

Les intervalles d'incertitudes de mesure sont systématiquement exigés. Dans le cas de mesures directes par appareil dédié, on se référera à la notice de l'appareil de mesure et dans le cas d'utilisation du logiciel REGRESSI<sup>TM</sup>, on se fiera aux incertitudes proposées pour les coefficients des régression pour calculer les incertitudes sur les grandeurs finales.


## 1. <u>Mesures directes des auto-inductances et des résistances internes des deux bobines</u>

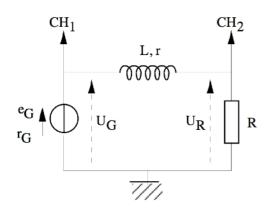
| 1.1.On utilisera un « LCR mètre » pour la mesure des auto-inductances $L_1$ et $L_2$                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                  |
|                                                                                                                                                  |
|                                                                                                                                                  |
| 1.2.On utilisera le multimètre METRIX <sup>TM</sup> pour les valeurs des résistances internes $r_1$ et $r_2$                                     |
|                                                                                                                                                  |
|                                                                                                                                                  |
|                                                                                                                                                  |
| Le montage suivant nécessitera une résistance R de $100~\Omega$ réalisé avec une boite AOIP x $10\Omega$ .<br>Mesurez précisément cette valeur : |
|                                                                                                                                                  |
|                                                                                                                                                  |

## 2. Mesures par les impédances de groupements « série »

Il est possible de monter en série les bobines de deux façons différentes :

- soit les courants "tournent dans le même sens", on obtient une bobine équivalente  $(B_3)$ :  $L_3, r_3$  (les flux magnétiques « extérieurs » s'ajoutent en valeur absolue).
- soit les courants "tournent en sens contraire", on obtient une bobine équivalente  $(B_4)$ :  $L_4$ ,  $r_4$  (les flux magnétiques « extérieurs » se retranchent en valeur absolue).
  - 2.1. Compléter les expressions littérales ci-dessous pour exprimer finalement  $L_3$ , $r_3$ , $L_4$ , $r_4$  en fonction de  $L_1$ , $r_1$ , $L_2$ , $r_2$  et M.




- 2.2. On réalise ces deux branchements successivement (en veillant à ce que les bobines restent accolées !) pour mesurer directement  $L_3$  et  $L_4$  au LCR mètre.
- 2.3. On en déduit une première estimation du coefficient de mutuelle inductance M par son expression ainsi que du coefficient de couplage k par sa définition :

$$M = \frac{L_3 - L_4}{4} = k \equiv \frac{M}{\sqrt{L_1 L_2}} = \frac{L_3 - L_4}{4\sqrt{L_1 L_2}} = \frac{L_3 - L_4}$$

2.4. On confirmera au passage la relation indépendante de la valeur du couplage

$$L_1 + L_2 = \frac{L_3 + L_4}{2} =$$

2.5. Comme la mesure directe d'inductance n'est généralement pas possible (pas de LCR mètre), on propose une mesure indirecte des L et r des groupements



La bobine à étudier est placée en série avec un résistor de résistance connue  $R=100\,\Omega$  aux bornes d'un générateur de fonction délivrant une tension sinusoïdale de fréquence f.

$$\underline{U_G} = (R + r + jL\omega) \cdot \underline{I} ; \underline{U_R} = R\underline{I}$$

$$|Z| = |R + r + jL\omega| = R\frac{\underline{U_{Geff}}}{\underline{U_{Reff}}}$$

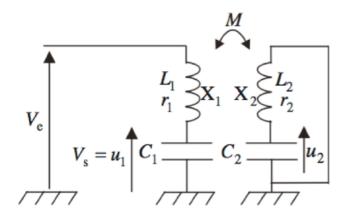
$$|Z| |\sin(\varphi)| = L\omega$$

Les mesures de  $U_{\it Geff}$  ,  $U_{\it Re\,ff}$  et  $\phi$  à différentes fréquences f permettent d'obtenir r et L.

Pour différentes valeurs de la fréquence f (entre 100 et 1000 Hz), on mesure les tensions  $U_{\text{Geff}}$  et  $U_{\text{Reff}}$  ainsi que le déphasage  $\phi$  entre ces deux tensions. Les mesures sont faites à l'aide de l'oscilloscope numérique et saisies avec Regressi.

On fera deux modélisations pour déterminer L et r :

1ère modélisation: on trace la courbe  $Z |\sin(\phi)| = g(f)$ 

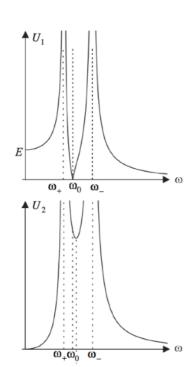

**2ème modélisation**: on trace la courbe  $|Z|^2 = h(f^2)$ 

En déduire les valeurs de L3, L4, r3, r4 (avec leur incertitude)

Calculer le coefficient M à l'aide de  $L_3$  et  $L_4$  puis en déduire k le coefficient de couplage de votre groupement par les valeurs de  $L_1$  et  $L_2$ 



## 3. Mesures par les courbes de résonance de circuits LC couplés par mutuelle inductance M




Réaliser ce montage avec nos deux bobines quasi-identiques précédentes accolées associées à deux condensateurs de même capacité  $C_1=C_2=C=10$ nF (boite à décade de capacités)

Le GBF fournit un signal sinusoïdal Ve de 2V crête à crête dont on fera varier la fréquence dans la seule gamme 6-9 kHz

On relèvera simultanément les tensions efficaces  $U_1$  et  $U_2$  aux bornes des condensateurs en fonction de la fréquence forcée ainsi que le déphasage entre ces deux signaux grâce au mode multimètre de REGRESSI<sup>TM</sup>

L'allure attendu des résonances et anti-résonance pour des oscillateurs **sans résistance électrique** est la suivante :



Les équations couplées électriques sont en vérité :

$$\begin{cases} L_{1} \frac{di_{1}}{dt} + r_{1} i_{1} + \frac{q_{1}}{C_{1}} + M \frac{di_{2}}{dt} = v_{e} \\ L_{2} \frac{di_{2}}{dt} + r_{2} i_{2} + \frac{q_{2}}{C_{2}} + M \frac{di_{1}}{dt} = 0 \end{cases} \text{ ou } \begin{cases} \frac{d^{2} i_{1}}{dt^{2}} + \frac{r_{1}}{L_{1}} \cdot \frac{di_{1}}{dt} + \frac{i_{1}}{L_{1}C_{1}} + \frac{M}{L_{1}} \frac{d^{2} i_{2}}{dt^{2}} = \frac{dv_{e}}{dt} \\ \frac{d^{2} i_{2}}{dt^{2}} + \frac{r_{2}}{L_{2}} \cdot \frac{di_{2}}{dt} + \frac{i_{2}}{L_{2}C_{2}} + \frac{M}{L_{2}} \frac{d^{2} i_{1}}{dt^{2}} = 0 \end{cases}$$

On peut alors rechercher <u>en l'absence de résistance et pour des</u> <u>circuits parfaitement symétriques</u> un régime <u>libre</u> sinusoïdal solution où les deux signaux d'intensité (ou de tension aux bornes des condensateurs) auraient la même pulsation.

Montrer que deux pulsations sont envisageables vérifiant :

$$\omega_{+} = \frac{\omega_{0}}{\sqrt{1+k}}$$
 et  $\omega_{-} = \frac{\omega_{0}}{\sqrt{1-k}}$  avec  $\omega_{0} = \frac{1}{\sqrt{LC}}$  et  $k = \frac{M}{L}$ 

| Relever précisément les courbes de résonance puis exprimer k en fonction de $\frac{f_+}{f}$ et, enfin, donner k |
|-----------------------------------------------------------------------------------------------------------------|
| avec son incertitude.  Comparer à l'estimation de la méthode précédente (simplicité de mesure, précision)       |
|                                                                                                                 |
|                                                                                                                 |